The equation of the plane through the point (2, - 1, - 3) and par

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

201.

The number of solutions of the equation tan(x) + sec(x) = 2cos(x) and cos(x)  0 lying in the interval (0, π) is :

  • 2

  • 1

  • 0

  • 3


202.

The angle between a and b is 5π6 and the projection of a in the direction of b is - 63, then a is equal to :

  • 6

  • 32

  • 12

  • 4


203.

A unit vector in the plane of i^ + 2j^ + k^ and i^ + j^ + 2k^ and perpendicular yo 2i^ + j^ + k^ is :

  • j^ - k^

  • i^ + j^2

  • j^ + k^2

  • j^ - k^2


Advertisement

204.

The equation of the plane through the point (2, - 1, - 3) and parallel to the lines x - 13 = y + 22 = z- 4 and x2 = y - 1- 3 = z - 22 is :

  • 8x + 14y + 13z + 37 = 0

  • 8x - 14y + 13z + 37 = 0

  • 8x + 14y - 13z + 37 = 0

  • 8x + 14y + 13z - 37 = 0


A.

8x + 14y + 13z + 37 = 0

Given equations of lines are 

x - 13 = y + 22 = z- 4 and x2 = y - 1- 3 = z - 22.

Equation of plane is

a(x - 2) + b(y + 1) + c(z + 3) = 0

Now, given lines are parallel to it.

      3a + 2b - 4c = 0

and 2a - 3b + 2c = 0

Elimination of a, b and c gives

x - 2y + 1z + 332- 42- 32 = 0

 x - 24 - 12 - y + 16 + 8+ z + 3- 9 - 4 = 0 - 8x + 16 - 14y - 14 - 13z - 39 = 0 8x + 14y + 13z + 37 = 0


Advertisement
Advertisement
205.

If for a plane, the intercepts on the co-ordinate axes are 8, 4, 4, then the length of the perpendicular from the origin on to the plane is :

  • 83

  • 38

  • 3

  • 43


206.

If a plane meets the co-ordinate axes at A, B and C such that the centroid of the triangle is (1, 2, 4), then the equation of the plane is:

  • x + 2y + 4z = 12

  • 4x + 2y + z = 12

  • x + 2y + 4z = 3

  • 4x + 2y + z = 3


207.

The position vector of the point where the line r = i^ + j^ - k^ + ti^ + j^ - k^ meets the plane r . i^ + j^ - k^ = 5 is :

  • 5i^ + j^ - k^

  • 5i^ + 3j^ - 3k^

  • 2i^ + j^ + 2k^

  • 5i^ + j^ + k^


208.

If the distance of the point (1, 1, 1) from the origin is half its distance from the plane x + y + z+ k = 0, then k is equal to :

  • ± 3

  • ± 6

  • - 3, 9

  • 3, - 9


Advertisement
209.

The angle between the line x - 32 = y - 11 = x + 4- 2 and the plane, x + y + z + 5 = 0 is :

  • sin-123

  • sin-113

  • π4

  • sin-1133


210.

The point of intersection of the line r = 7i^ + 10j^ + 13k^ + s2i^ + 3j^ + 4k^ and r = 3i^ + 5j^ + 7k^ + si^ + 2j^ + 3k^ is :

  • i^ + j^ - k^

  • 2i^ - j^ + 4k^

  • i^ - j^ + k^

  • i^ + j^ + k^


Advertisement