The line joining the points 6a→ - 4b→&nb

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

231.

If I is incentre of ABC, then I is

  • aa +bb +cca +b +c

  • aa +bb +cca2 +b2 +c2

  • 13a + b + c

  • a +b + ca +b +c


232.

What are the DR's of vector parallel to (2, - 1, 1) and (3 4, - 1) ?

  • (1, 5, - 2)

  • (- 2, - 5, 2)

  • (- 1, 5, 2)

  • (- 1, - 5, - 2)


233.

Let ABCD be a parallelogram whose diagonals intersect at P and O be the origin, then OA + OB + OC + OD

  • OP

  • 2OP

  • 3OP

  • 4OP


234.

A unit vector in the plane of i^ +2j^ +k^ and i^ +j^ +2k^ and perpendicular to 2i^ +j^ +k^, is

  • j^ -k^

  • i^ +j^2

  • j^ +k^2

  • j^ -k^2


Advertisement
Advertisement

235.

The line joining the points 6a - 4b + 4c, - 4c and the line joining the points - a - 2b - 3c, a + 2b - 5c intersect at

  • - 4a

  • 4a - b - c

  • 4c

  • None of the above


D.

None of the above

The equation of the lines joining 6a - 4b + 4c- 4c and - a - 2b - 3ca + 2b - 5c are respectively

       r = 6a - 4b + 4c + m- 6a + 4b - 8c       ...iand r =   - a - 2b - 3c + n2a + 4b - 2c       ...ii

For the point of intersection, the Eqs. (i) and (ii) should give the same value of r. Hence equating the coefficients of vectors a, b and c in the two expressions for r, we get

     6m + 2n = 7        ...(iii)

      2m - 2n = 1        ...(iv)

and 8m - 2n = 7        ...(v)

On solving Eqs. (iii) and (iv), we get m = 1, n = 12. These values of m and n, also satisfy the Eq. (v).

Thus, The lines intersect. Putting the value of m in Eq. (i), we get the position vector of the point of intersection as - 4c.


Advertisement
236.

The symmetric equation of lines 3x + 2y + z - 5 = 0 and x + y - 2z - 3 = 0, is

  • x - 15 = y - 47 = z - 01

  • x + 15 = y + 47 = z - 01

  • x + 1- 5 = y - 47 = z - 01

  • x - 1- 5 = y - 47 = z - 01

     


237.

The equation of the plane containing the line x + 1- 3 = y - 32 = z + 21 and the point (0, 7, - 7) is

  • x + y + z = 1

  • x + y + z = 2

  • x + y + z = 0

  • None of these


238.

Angle of intersection of the curve r = sinθ + cosθ and r = 2sinθ is equal to

  • π2

  • π3

  • π4

  • None of these


Advertisement
239.

A point on XOZ - plane divides the join of (5, - 3, - 2) and (1, 2, - 2) at

  • 135, 0, - 2

  • 135, 0, 2

  • (5, 0, 2)

  • (5, 0, - 2)


240.

If the line OR makes angles θ1, θ2, θ3, with the planes XOY, YOZ, ZOX respectively, then cos2θ1 + cos2θ2 + cos2θ3, is equal to

  • 1

  • 2

  • 3

  • 4


Advertisement