The equation of a straight line parallel to the x-axis is given b

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

361.

The foot of perpendicular from the point (3, 4, 5) to the plane x + y + z = 9 is

  • (2, 3, 4)

  • (3, 5, - 2)

  • (3, 5, 2)

  • (3, 2, 4)


362.

The area of the parallelogram having the diagonals 3i + j - 2k and i - 3j + 4k is

  • 5 sq units

  • 103 sq units

  • 53 sq units

  • 10 sq units


363.

The ratio in which yz-plane divide the line joining the points A(3, 1, - 5) and B(1, 4, - 6) is

  • - 3 : 1

  • 3 : 1

  • - 1 : 3

  • 1 : 3


364.

If P5n = 20P3n , then the value of n is

  • 7

  • 5

  • 8

  • 9


Advertisement
Advertisement

365.

The equation of a straight line parallel to the x-axis is given by

  • x - a1 = y - b1 = z - c1

  • x - a0 = y - b0 = z - c1

  • x - a0 = y - b1 = z - c1

  • x - a1 = y - b0 = z - c0


D.

x - a1 = y - b0 = z - c0

The direction cosine of a line parallel to x-axis are (1, 0, 0).

The equation of line parallel to x-axis is,

x - a1 = y - b0 = z - c0


Advertisement
366.

The shortest distance between the lines

x - 31 = y - 5- 2 = z - 71 and x + 11 = y + 1- 6 = z + 11 is

  • 1229 units

  • 229 units

  • 29 units

  • 1429 units


367.

The angle between the lines x - 23 = y + 1- 2; z= 2 and x - 11 = 2y + 33; z +52 is

  • π3

  • π6

  • π2

  • π4


368.

The angle between planes 2x - y + z = 6 and x + y + 2z = 8 is

  • 30°

  • 60°

  • cos-132

  • sin-132


Advertisement
369.

Equation of a plane passing through (- 1, 1, 1) and (1, - 1, 1) and perpendicular to x + 2y + 2z = 5 is

  • 2x + 3y - 3z + 3 = 0

  • x + y + 3z - 5 = 0

  • 2x+ 2y - 3z + 3 = 0

  • x + y + z - 3 = 0


370.

The position vectors of three non-collinear points A, Band C are a, b and c, respectively. The perpendicular distance of point C from the straight line AB is

  • b × cb - c

  • a × bb - a

  • c × ac - a

  • b × c + c × a + a × bb - a


Advertisement