A variable plane is at a constant distance p from the origin O an

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

371.

If A(- 1, 3, 2),B (2, 3, 5) and C(3, 5, - 2) are vertices of a ABC, then angles of ABC are

  • A = 90°, B = 30°, C = 60°

  • A = B = C = 90°

  • A = B = 45°, C = 90°

  • None of the above


372.

If a, band care three non-coplanar vectors, then [a x b b x c c x a] is equal to

  • [a b c]3

  • [a b c]2

  • 0

  • None of these


373.

Image point of (1, 3, 4) in the plane 2x - y + z + 3 = 0 will be

  • (3, 5, 2)

  • (3, 5, - 2)

  • (- 3, 5, 2)

  • None of these


374.

Distance of the point (2, 3, 4) from the plane 3x - 6 y + 2z + 11 = 0 is

  • 0

  • 1

  • 2

  • 3


Advertisement
375.

The three lines of a triangle are given by (x2 - y2)(2x + 3y - 6) = 0. If the point (- 2, λ) lies inside and (μ, 1) lies outside the triangle, then

  • λ  1, 103, μ  - 3, 5

  • λ  2, 103, μ  - 1, 1

  • λ  - 1, 92, μ  - 2, 103

  • None of the above


Advertisement

376.

A variable plane is at a constant distance p from the origin O and meets the axes at A, B and C. The locus of the centroid of the tetrahedron OABC is

  • 1x2 + 1y2 + 1z2 = 1p2

  • 1x2 + 1y2 + 1z2 = 16p2

  • x2 + y2 + z2 = 16p2

  • x2 + y2 + z2 = p2


B.

1x2 + 1y2 + 1z2 = 16p2

Let the plane meets the axes at A(a, 0, 0), B(0, b, 0) and C(O, 0, c) Then, equation of plane is

xa + yb + zc = 1

It is given that plane is at a constant distance p from the origin (0, 0, 0).

    p = 0 + 0 - 11a2 + 1b2 + 1c2 1p2 = 1a2 + 1b2 + 1c2

Let α, β, γ be the coordinates of centroid of the formed tetrahedron

Then, α = a + 0 + 0 + 04  a = 4α           β= 0 + b + 0 + 04  b = 4β          γ = 0 + 0 + c +04  c = 4γOn putting values of a,b, c in Eq. (i), we get       1p2 = 14α2 + 14β2 + 14γ2   16p2 = 1α2 + 1β2 + 1γ2 Locus of centroid of tetrahedron is1x2 + 1y2 + 1z2 = 16p2


Advertisement
377.

The equation of the plane through intersection of planes x + 2y + 3z = 4 and 2x + y - z = - 5 and perpendicular to the plane 5x + 3y + 6z = - 8 is

  • 23x + 14y - 9z = - 8

  • 51x + 15y - 50z = - 173

  • 7x - 2y + 3z = - 81

  • None of the above


378.

If l, m, n are the direction cosines of a line, then the maximum value of lmn is

  • 123

  • 153

  • 13

  • None of the above


Advertisement
379.

If the shortest distance between the lines x - 12 = y - 23 = z - 34 and x - 23 = y - 44 = z - 55 is d, then [d], where [.] is the greatest integer function, is equal to

  • 0

  • 1

  • 2

  • 3


380.

The angle between the planes 3x-  4y + 5z = 0 and 2x - y - 2z = 5 is

  • π6

  • π3

  • π2

  • None of these


Advertisement