A person standing on the bank of a river observes that the angle

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

21.

A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank of the river is 60o and when he retires 40 meters away from the tree the angle of elevation becomes 30o. The breadth of the river is

  • 20 m

  • 30 m

  • 40 m

  • 40 m


A.

20 m



tan to the power of straight o space 30 space space equals space fraction numerator straight h over denominator 40 plus straight b end fraction
rightwards double arrow space square root of 3 straight h end root space equals space 40 plus straight b space.... space left parenthesis straight i right parenthesis
tan space 60 to the power of straight o space equals space straight h divided by straight b
rightwards double arrow space straight h square root of 3 straight b space... left parenthesis ii right parenthesis
rightwards double arrow space straight b space equals space 20 space straight m
108 Views

Advertisement
22.

The equation sin x(sin(x) + cos(x)) = k has real solutions, where k is a real number. Then,

  • 0  k  1 + 22

  • 2 - 3  k  2 + 3

  • 0  k  2 - 3

  • 1 - 22  k  1 + 22


23.

The cosine of the angle between any two diagonals of a cube is

  • 13

  • 12

  • 23

  • 13


24.

The value of cos15°cos71°2sin71°2 is

  • 12

  • 18

  • 14

  • 116


Advertisement
25.

If z = sinθ - icosθ, then for any integer n,

  • zn +1zn = 2cos2 - 

  • zn +1zn = 2sin2 - 

  • zn -1zn = 2isin  - 2

  • zn -1zn = 2icos2 - 


26.

The minimum value of cosθ + sinθ + 2sinθ for θ  0, π2

  • 2 + 2

  • 2

  • 1 + 2

  • 22


27.

If cot2x3 + tanx3 = csckx3, then the value of k is

  • 1

  • 2

  • 3

  • - 1


28.

If θ  π2, 3π2, then the value of 4cos4θ + sin22θ + 4cotθcos2π4 - θ2 is

  • - 2cotθ

  • 2cotθ

  • 2cosθ

  • 2sinθ


Advertisement
29.

The number ofreal solutions of the equation sinx - xcosx - x2 = 0 is

  • 1

  • 2

  • 3

  • 4


30.

In ABC, if a2cos2A - b2 - c2 = 0 then

  • π4 < A < π2

  • π2 < A < π

  • A = π2

  • A < π4


Advertisement