If cosx and sinx are solutions of the differe

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

31.

In a AABC, if C = 90°, r and R are the inradius and circumradius of the ABC respectively, then 2(r + R) is equal to

  • b + c

  • c + a

  • a + b

  • a + b + c


32.

Let α and β be two distinct roots of acosθ + bsinθ = c  where a, b, c are three real constants and θ  0, 2π. Then, α + β is also a root of the same equation, if

  • a + b = c

  • b + c = a

  • c + a = b

  • c = a


Advertisement

33.

If cosx and sinx are solutions of the differential equation

a0d2ydx2 + a1dydx + a2y = 0

where a0, a1 and a2 are real constants, then which of the following is/are always true?

  • Acosx + Bsinx is a solution, where A and B are real constants 

  • Acosx + π4 is a solution, where A is a real constant

  • Acosxsinx is a solution, where A is a real constant

  • Acosx + π4 + Bsinx - π4 is a souton, where A and B are real constants 


A.

Acosx + Bsinx is a solution, where A and B are real constants 

B.

Acosx + π4 is a solution, where A is a real constant

D.

Acosx + π4 + Bsinx - π4 is a souton, where A and B are real constants 

(a) Let f(x) = cosx and g(x) = sinx

Consider the Wronskian of f(x) and g(x),

W = f(x)g(x)f'(x)g'(x)    = cosxsinx- sinxcosx    = cos2x + sin2x    = 1  0

Thus, the functions are linearly independent. So, the general solution of given differential equation is given by y = Acosx + Bsinx, where A and B are real constants.

[ if y1 and y2 are linearly independent solutions of the differential equation ay'' + by' + c = 0, then the general solution is y = c1y1 + c2y2, where c1 and c2 are constants]

Hence, option (a) is true.

(b) Let y = Acosx + π4

            = Acosx . cosπ4 - sinx . sinπ4                    cosA +B = cosA . cosB - sinA . sinB= A2cosx - sinx= A2cosx + - A2sinx

which is in the form of general solution.

Hence, option (b) is true

(c) Let y = Acosxsinx, which cannot be expressed in the form of general solution.

(d) Let y = Acosx + π4 +Bsinx - π4

                 = Acosx + π4 +Bsinx - π4= Acosx . 12 - sinx . 12 + Bsinx . 12 - cosx . 12                 = cosx . A2 - B2 + sinx . B2 - A2

which is in the form of general solution.

Hence, option (d) is true.


Advertisement
34.

Which of the following statements is /are correct for 0 < θ < π2

  • cosθ1/2  cosθ2

  • cosθ3/4  cos3θ4

  • cos5θ6  cosθ5/6

  • cos7θ8  cosθ7/8


Advertisement
35.

The value of tanπ2 + 2tan2π5 + 4cot4π5 is

  • cotπ5

  • cot2π5

  • cot4π5

  • cot3π5


36.

The range of the function y = 3sinπ216 - x2 is

  • 0, 3/2

  • [0, 1]

  • 0, 3/2

  • 0, 


37.

In a ABC,  a, b, c are the sides of the triangle opposite to the angles A, B, C, respectively. Then, the value of a3sin(B - C) + b3sin(C - A) + c3sin(A - B) is equal to

  • 0

  • 1

  • 3

  • 2


38.

cos2π7 + cos4π7 + cos6π7

  • is equal to zero

  • lies between 0 and 3

  • is a negative number

  • lies between 3 and 6


Advertisement
39.

The minimum value of 2sinx + 2cosx is

  • 21 - 1/2

  • 21 + 1/2

  • 22

  • 2


40.

If p = cosπ4- sinπ4sinπ4cosπ4 and X = 1212. Then, p3X is equal to

  • 01

  • - 1212

  • - 10

  • - 12- 12


Advertisement