Number of solutions of the equation tan(x) + sec(x) = 2cos(x), x

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

41.

For 0  P, Q  π2, if sinP + cosQ = 2, then the value of tanP + Q2 is equal to

  • 1

  • 12

  • 12

  • 32


42.

The value of

cos275° + cos245° + cos215° - cos230° - cos260° is

  • 0

  • 1

  • 12

  • 14


43.

The maximum and minimum values of cos6θ + sin6θ  are respectively

  • 1 and 14

  • 1 and 0

  • 2 and 0

  • 1 and 12


44.

Let fθ = 1 + sin2θ2 - sin2θ. Then, for all values of θ

  • fθ > 94

  • f(θ) < 2

  • fθ > 114

  • 2  f(θ)  94


Advertisement
45.

If P, Q and R are angles of an isosceles triangle and P = π2,  then the value of

cosP3 - isinP33 + cosQ + isinQcosR - isinR        + cosP - isinPcosQ - isinQcosR - isinR

  • i

  • - i

  • 1

  • - 1


46.

If fx = sinx + 2cos2x, π4  x  3π4. Then, f attains its

  • minimum at x = π4

  • maximum at x = π2

  • minimum x = π2

  • mamum at x = sin-114


47.

If sin2θ + 3cosθ = 2 then cos3θ + sec3θ is equal to

  • 1

  • 4

  • 9

  • 18


48.

Which of the following real valued functions is/are not even functions?

  • fx = x3sinx

  • f(x) = x2 cosx

  • fx = exx3sinx

  • f(x) = x - [x], where [x] denotes the greatest integer less than or equal to x.


Advertisement
Advertisement

49.

Number of solutions of the equation tan(x) + sec(x) = 2cos(x), x [0, π] is

  • 0

  • 1

  • 2

  • 3


C.

2

Given equation,        tanx + secx = 2cosx                          sinxcosx + 1cosx = 2cosx                  sinx + 1 = 2cos2x = 21 - sin2x = 2 - 2sin2x                    2sin2x + sinx - 1 = 0     2sin2x + 2sinx - sinx - 1 = 0 2sinxsinx + 2 - 1sinx + 1 = 0                 sinx + 22sinx - 1 = 0 sinx = - 2, which is not possible.or sinx = 12 x = π6, 5π6 x  0, π  The number of solution= 2.


Advertisement
50.

If sin-1x +sin-1y + sin-1z = 3π2, then the value of x+ y9 + z91x9y9z9 is equal to

  • 0

  • 1

  • 2

  • 3


Advertisement