For 0 ≤ P, Q ≤ π2, if sinP + cosQ = 2, then the value of tanP + Q2 is equal to
1
12
32
The value of
cos275° + cos245° + cos215° - cos230° - cos260° is
0
14
The maximum and minimum values of cos6θ + sin6θ are respectively
1 and 14
1 and 0
2 and 0
1 and 12
Let fθ = 1 + sin2θ2 - sin2θ. Then, for all values of θ
fθ > 94
f(θ) < 2
fθ > 114
2 ≤ f(θ) ≤ 94
If P, Q and R are angles of an isosceles triangle and ∠P = π2, then the value of
cosP3 - isinP33 + cosQ + isinQcosR - isinR + cosP - isinPcosQ - isinQcosR - isinR
i
- i
- 1
If fx = sinx + 2cos2x, π4 ≤ x ≤ 3π4. Then, f attains its
minimum at x = π4
maximum at x = π2
minimum x = π2
mamum at x = sin-114
If sin2θ + 3cosθ = 2 then cos3θ + sec3θ is equal to
4
9
18
Which of the following real valued functions is/are not even functions?
fx = x3sinx
f(x) = x2 cosx
fx = exx3sinx
f(x) = x - [x], where [x] denotes the greatest integer less than or equal to x.
Number of solutions of the equation tan(x) + sec(x) = 2cos(x), x ∈ [0, π] is
2
3
C.
Given equation, tanx + secx = 2cosx⇒ sinxcosx + 1cosx = 2cosx⇒ sinx + 1 = 2cos2x = 21 - sin2x = 2 - 2sin2x⇒ 2sin2x + sinx - 1 = 0⇒ 2sin2x + 2sinx - sinx - 1 = 0⇒ 2sinxsinx + 2 - 1sinx + 1 = 0⇒ sinx + 22sinx - 1 = 0⇒ sinx = - 2, which is not possible.or sinx = 12⇒ x = π6, 5π6⇒ x ∈ 0, π∴ The number of solution= 2.
If sin-1x + sin-1y + sin-1z = 3π2, then the value of x9 + y9 + z9 - 1x9y9z9 is equal to