The value of cot54°tan36° + tan20°cot70° is
0
2
3
1
If sin6θ + sin4θ + sin2θ = 0, then the general value of θ
nπ4, nπ ± π3
nπ4, nπ ± π6
nπ4, 2nπ ± π3
nπ4, 2nπ ± π6
A.
sin6θ + sin4θ + sin2θ = 0⇒ sin6θ + sin2θ + sin4θ = 0⇒ 2sin6θ + 2θ2cos6θ - 2θ2 + sin4θ = 0⇒ 2sin4θ cos2θ + sin4θ = 0⇒ sin4θ2cos2θ + 1 = 0⇒ sin4θ = 0⇒ 2cos2θ + 1 = 0⇒ 2cos2θ = - 1⇒ 4θ = nπ cos2θ = - 12 = cos2π3⇒ θ = nπ4 2θ = 2nπ ± 2π3⇒ θ = nπ ± π3
In a ∆ABC, 2acsinA - B + C2 is equal to
a2 + b2 - c2
c2 + a2 - b2
b2 - a2 - c2
c2 - a2 - b2
Value of tan-1sin2 - 1cos2
π2 - 1
1 - π4
2 - π2
π4 - 1
The value of sin55° - cos55°sin10° is
12
In triangle ABC, a = 2, b = 3 and sin(A) = 23, then B is equal to
30°
60°
90°
120°
Simplest form of 22 + 2 + 2 + 2cos4x is
secx2
secx
cscx
If 5cos2θ + 2cos2θ2 + 1 = 0, when 0 < θ < π, then the values of θ are
π3 ± π
π3, cos-135
cos-135 ± π
π3, π - cos-135
tanπ4 + 12cos-1ab + tanπ4 - 12cos-1ab is equal to
2ab
2ba
ab
ba
The equation 3sinx + cosx = 4 has
only one solution
two solutions
infinitely many solutions
no solution