If the relation between direction ratios of two lines are given b

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

101.

The equation 3sin2x + 10cosx - 6 is satisfied, if

  • x =  ± cos-113

  • x = 2 ± cos-113

  • x =  ± cos-116

  • x = 2 ± cos-116


102.

If ecosx - e- cosx = 4, then the value of cosx is

  • log2 + 5

  • - log2 + 5

  • log- 2 + 5

  • None of these


103.

If tan-1ax + tan-1bx = π2, then x is equal to

  • ab

  • 2ab

  • 2ab

  • ab


104.

If cosθ - α = a, cosθ - β = b, then

sin2α - β + 2abcosα - β is equal to

  • a2 + b2

  • a2 - b2

  • b2 - a2

  • - a2 - b2


Advertisement
105.

The most general solutions of the equation

secx - 1 = 2 - 1tanx are given by

  •  + π8

  • 2, 2 + π4

  • 2

  • None of these


106.

If α + β - γ = π, then sin2α + sin2β - sin2γ is equal to

  • 2sinαsinβcosγ

  • 2cosαcosβcosγ

  • 2sinαsinβsinγ

  • None of the above


107.

The range of the function f (x) = Px - 37 - x is

  • {1, 2, 3}

  • {1, 2, 3, 4, 5, 6}

  • {1, 2, 3, 4}

  • {1, 2, 3, 4, 5}


108.

The principal amplitude of sin40° + icos40°5 is

  • 70°

  • - 110°

  • 110°

  • - 70°


Advertisement
Advertisement

109.

If the relation between direction ratios of two lines are given by a + b + c = 0 and 2ab + 2ac - bc = 0, then the angle between the lines is

  • π

  • 2π3

  • π2

  • π3


B.

2π3

We have,

   a +b + c = 0 and 2ab + 2ac - bc = 0 a = - (b +c) and 2a(b +c)- bc = 0                             - 2(b +c)2 - bc = 0                              2b2 + 5bc + 2c2 = 0                              2b +c(b +2c) = 0If 2b + c = 0, then a =-(b + c) a = b     a = b and c = - 2b  a1 = b1 = c- 2If b + 2c = 0, then a=- (b + 1)  a = c

 a = c and b = - 2c  a1 = b- 2 = c1

Thus, the direction ratios of two lines are proportional to 1, 1,- 2 and 1,- 2, 1 respectively

So, the angle θ between them is given by

cosθ = 1 - 2 - 21 + 1 + 41 + 4 + 1 = - 12 θ = 2π3


Advertisement
110.

The value of 2cos56°15' +isin56°15'8

 

  • - 16i

  • 16i

  • 8i

  • 4i


Advertisement