If cosα + isinα, b = co

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

111.

If a = i^ - j^ + 2k^ and b = 2i^ - j^ +k^, then the angle θ between a and b is given by

  • tan-11

  • sin-112

  • sec-11

  • tan-113


112.

At t = 0, the function f(t) = sintt has

  • a minimum

  • a discontinuity

  • a point of inflexion

  • a maximum


113.

If r = 2r - 1Crm1m2 - 12mm + 1sin2m2sin2msin2m + 1, then the value of r = 0mr

  • 1

  • 0

  • 2

  • None of these


Advertisement

114.

If cosα + isinα, b = cosβ + isinβ, c = cosγ + isinγ and bc + ca + ab = 1, then cosβ - γ + cosγ - α + cosα - β is equal to

  • 32

  • 32

  • 0

  • 1


D.

1

We have,

a = cosα + isinαb = cosβ + isinβc = cosγ + isinγ

Now, bc =  cosβ + isinβcosγ + isinγ × cosγ - isinγcosγ - isinγ= cosβ . cosγ + sinβ . sinγ + isinβ . cosγ - sinγ . cosβ           bc = cosβ - γ + isinβ - γ              ...(i)Similarly, ca = cosγ - α + isinγ - α              ...(ii)and          ab = cosα - β + isinα - β             ...(iii)On adding Eqs. (i),(ii), and (iii), we getcosβ - γ + cosγ - α + cosα - β + isinβ - γ + sinγ - α + sinα - β= 1                     as given bc + ca + ab = 1On equating real parts, we getcosβ - γ + cosγ - α + cosα - β = 1

 


Advertisement
Advertisement
115.

The maximum value of 4 sin2(x) - 12sin(x) + 7 is

  • 25

  • 4

  • does not exist

  • None of the above


116.

A line making angles 45° and 60° with the positive directions of the axes of x and y makes with the positive direction of z-axis, an angle of

  • 60°

  • 120°

  • 60° or 120°

  • None of these


117.

If I = 1001, J = 01- 10 and B = cosθsinθ- sinθcosθ, then B is equal to

  • I cosθ + Jsinθ

  • I sinθ + Jcosθ

  • I cosθ - Jsinθ

  • - I cosθ + Jsinθ


118.

Find the value of sin12°sin48°sin54°.

  • 12

  • 14

  • 16

  • 18


Advertisement
119.

If 3sinθ + 5cosθ, then the value of 5sinθ - 3cosθ is equal to

  • 5

  • 3

  • 4

  • None of these


120.

Domain of the function f(x) = logx(cos(x)), is

  • - π2, π2 - 1

  • - π2, π2 - 1

  • - π2, π2

  • None of these


Advertisement