If the axes are rotated through an angle 45° in the positive direction without changing the origin,then the co-ordinates of the point (2, 4) in the old system are
1 - 22, 1 + 22
1 + 22, 1 - 22
22, 2
2, 2
x2y2/3 + (xy2)23 = 1
x2 - y2 = 4xy
x2 - y2 = 12xy
x2 - y22 = 16xy
fx = cos2x + sin4xsin2x + cos4x, for x ∈ R, then f(2002) is equal to
1
2
3
4
The function f : R → R is defined by f(x) = cos2x + sin4x for x ∈ R, then f(R) is equal to
(34, 1]
[34, 1)
34, 1
C.
We have,fx = cos2x + sin4x for x ∈ R = 1 - sin2x + sin4x = 1 - sin2x1 - sin2x = 1 - sin2xcos2x = 1 - 14sin22xHere, 0 ≤ sin22x ≤ 1⇒ 0 = sin22x ≤ 1⇒ 0 ≤ sin22x4 ≤ 14⇒ 0 ≥ - sin22x4 ≥ - 14⇒ 1 ≥ 1 - sin22x4 ≥ - 14⇒ 1 ≥ 1 - sin22x4 ≥ - 14 + 1⇒ 1 ≥ 1 - sin22x4 ≥ 34Range of f = 34, 1.
If xn = cosπ4n + isinπ4n, then x1, x2, x3...∞ is equal to
1 + i32
- 1 + i32
1 - i32
- 1 - i32
If z = 3 + 5i, then z3 + z¯ + 198 is equal to
- 3 - 5i
- 3 + 5i
3 - 5i
3 + 5i
If fx = sin2π8 + x2 - sin2π8 - x2, then the period of f is
π3
π2
π
2π
5633
3356
1665
6061
∑k = 13 cos22k - 1π12 is equal to
0
12
- 12
32
If 3 + 2isinθ1 - 2isinθ is a real number and 0 < θ < 2π, then θ is equal to
π6