A tower subtends angles α, 2α and 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

191.

cos276° + cos216° - cos76°cos16° is equal to

  • 0

  • 12

  • -1 2

  • 34


192.

sinhix is equal to

  • isinx

  • sinix

  • - isinx

  • isinix


193.

The perimeter of a triangle is 16cm, one of the sides is of length 6cm. If the area of the triangle is 12 sq cm. Then the triangle is

  • right angled

  • isosceles

  • equilateral

  • scalene


194.

If ABC is right angled at A, then r2 + r3 is equal to

  • r1 - r

  • r1 + r

  • r - r1

  • R


Advertisement
195.

If in ABC, r1 < r2 < r3, then :

  • a < b < c

  • a > b > c

  • b > a < c

  • a < c < b


196.

In a ABC, if 3a = b + c, then cotB2cotC2 is equal to :

  • 1

  • 2

  • 3

  • 4


197.

If in a triangle, if b = 20, c = 21 and sinA = 35, then a is equal to

  • 12

  • 13

  • 14

  • 15


Advertisement

198.

A tower subtends angles α, 2α and 3α respectively at points A, B and C, all lying on a horizontal line through the foot of the tower,then ABBC is equal to :

  • sin3αsin2α

  • 1 + 2cos2α

  • 2cos2α

  • sin2αsinα


B.

1 + 2cos2α

In ECD,    tan3α = hCD

 CD = hcot3α      ...iIn EBD,tan2α = hBD  BD = hcot2α     ...iiIn EAD,  tanα = hAD  AD = hcotα        ...iiiFrom Eqs. (ii) and (iii),AD- BD = hcotα - hcot2α          AB = hcotα - cot2α     ...iv

From Eqs. (i) and (ii), we getBD - CD = hcot2α - hcot3α          BC = hcot2α - cot3α        ...vFrom Eqs. (iv) and (v), we get     ABBC = hcotα - cot2α2cot2α - cot3α ABBC = cosαsinα - cos2αsin2αcos2αsin2α - cos3αsin3α = sin2α - αsinαsin2αsin3α - 2αsin2αsin3α            = sin3αsinα = 3sinα - 4sin3αsinα           = 3 - 4sin2α

         = - 3 - 21 - cos2α= 1 + 2cos2α


Advertisement
Advertisement
199.

The co-ordinate axes are rotated through an angle 135°. If the co-ordinates of a point P inthe new system are known to be (4, - 3), then the co-ordinates of P in the original system are :

  • 12, 72

  • 12, - 72

  • - 12, - 72

  • - 12, 72


200.

The angle between the curves y = sin(x) and y = cos(x) is

  • tan-122

  • tan-132

  • tan-133

  • tan-152


Advertisement