If sin6θ = 32cos5θsinθ - 32cos3θsinθ + 3x, then x is equal to :
cosθ
cos2θ
sinθ
sin2θ
D.
We have,sin6θ = 32sin32θ = 3 . 2sinθcosθ - 4 . 8cos3θsin3θ = 6sinθcosθ - 32cos3θsinθ1 - cos2θsin6θ = 32cos5θsinθ - 32cos3θsinθ + 3sin2θ ...iGiven that, sin6θ = 32cos5θsinθ - 32cos3θsinθ + 3x ...iiOn comparing Eqs. (i) and (ii), we get3x = 3sin2θ⇒ x = sin2θ
The period of the function fθ = sinθ3 + cosθ2 is
3π
6π
9π
12π
cosαsinβ - γ + cosβsinγ - α + cosγsinα - β is equal to
0
12
1
4cosαcosβcosγ
The value of cos2π15cos4π15cos8π15cos14π15 is :
116
18
112
14
If A + B + C = 270°, thencos(2A) + cos(2B) + cos(2C) is equal to :
4sin(A)sin(B)sin(C)
4cos(A)cos(B)cos(C)
1 - 4sin(A)sin(B)sin(C)
1 - 4cos(A)cos(B)cos(C)
If xn = cosπ2n + isinπ2n, then ∏n = 1∞xn is equal to
- 1
- 3
If n ∈ N and the period of cosnπsinxn is 4π, then n is equal to
4
3
2
The expression for tan9° - tan27° - tan63° + tan81° is equal to
In ∆ABC, cosB + 2C + 3A2 + cosA - B2 is
The value of series cos12° + cos84° + cos132° + cos156° is
- 14
- 12