E1 : a + b + c = 0, if 1 is a root of ax2 + bx + c = 0, E2 : b2 -

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

211.

For x IR, 3cos4x - 5 + 4 lies in the interval

  • [1, 7]

  • [4, 7]

  • [0, 7]

  • [2, 7]


212.

If x = logcotπ4 + θ, then the value of sinhx is

  • tan2θ

  • - tan2θ

  • cot2θ

  • - cot2θ


213.

If in a ABC, r3 = r1 + r2 + r, then A + B is equal to

  • 120°

  • 100°

  • 90°

  • 80°


214.

In a ABCa - b2cos2C2 + a +b2sin2C2 is equal to

  • a2

  • c2

  • b2

  • a2 + b2


Advertisement
215.

In a ABC, the correct formulae among the following are

I. r = 4RsinA2sinB2sinC2II. r1 = s - atanA2III. r3 = s - c

  • only I, II

  • only II, III

  • only I, III

  • I, II, III


216.

An aeroplane flying with uniform speed horizontally one km above the ground is observed at an elevation of 60°. After 10 s if the elevation is observed to be 30°, then the speed of the plane (in km/h) is

  • 2403

  • 2003

  • 2403

  • 1203


217.

If the distance between the points (acosθ, asinθ) and  (acosϕ, asinϕ) is 2a, then θ is equal to

  • 2 ± π + ϕ, n  Z

  •  + π2 + ϕ, n  Z

  • nπ - ϕ, n  Z

  • 2 + ϕ, n  Z


Advertisement

218.

E1 : a + b + c = 0, if 1 is a root of ax2 + bx + c = 0, E2 : b2 - a2 = 2ac, if sinθ, cosθ are the roots of ax2 + bx + c = 0 Which of the following is true ?

  • E1 is true, E2 is true

  • E1 is true, E2 is false

  • E1 is false, E2 is true

  • E1 is false, E2 is false


A.

E1 is true, E2 is true

Given that, 1 is a root of ax2 + bx + c = 0       a + b + c = 0 E1 : a + b +c = 0 is true.Since, cosθ, sinθ are the roots  of        ax2 + bx + c = 0 sinθ + cosθ = - ba          ...iand    sinθcosθ = caOn squaring both sides of equation (i)sinθ + cosθ2 = b2a2 sin2θ + cos2θ + 2sinθcosθ = b2a2 1 + 2ca = b2a2        2 . ca = b2 - a2a2 - a2 + b2 = 2ac E2 : b2 - a2 = 2ac is true.

Thus, E1 and E2 both are true.


Advertisement
Advertisement
219.

If A + C = 2B, then cosC - cosAsinA - sinC is equal to

  • cotB

  • cot2B

  • tan2B

  • tanB


220.

A + B = C  cos2A + cos2B + cos2C - 2cosAcosBcosC is equal to

  • 1

  • 2

  • 0

  • 3


Advertisement