Two sides of a triangle are given by the roots of the equation x2

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

221.

If cos2x = 2 + 1cosx - 12, cosx  12 then x 

  • 2 ± π3 : n  Z

  • 2 ± π6 : n  Z

  • 2 ± π2 : n  Z

  • 2 ± π4 : n  Z


222.

In a ABCacos2B + cos2C + cosAccosC + bcosB is equal to

  • a

  • b

  • c

  • a + b + c


223.

In a ABC, b +ctanA2tanB - C2 is equal to

  • a

  • b

  • c

  • 0


224.

If cosθ - 4sin(θ) = 1, then sin(θ) + 4cosθ is equal to 

  • ± 1

  • 0

  • ± 2

  • ± 4


Advertisement
225.

The extreme values of 4cosx2cosπ3 + x2cosπ3 - x2 over R, are

  • - 1, 1

  • - 2, 2

  • -3, 3

  • - 4, 4


Advertisement

226.

Two sides of a triangle are given by the roots of the equation x2 - 5x + 6 = 0 and the angle between the sides is π3.Then, the perimeter of

  • 5 +2

  • 5 +3

  • 5 +5

  • 5 +7


D.

5 +7

Given equation is          x2 - 5x + 6 = 0 x - 3x - 2 = 0                       x = 3, 2These are the sides of a triangleLet a = 3, b = 2, C = π3     cosC = a2 + b2 - c22ab cosπ3 = 32 + 22 - c22 . 3 . 2 12 = 13 - c212 c2 = 13 - 6 = 7  c = ± 7Perimeter of a triangle = a + b + c        = 3 + 2 + 7       = 5 + 7


Advertisement
227.

A tower, of x metres high, has a flagstaff at its top. The tower and the flagstaff subtend equal angles at a point distant y metres from the foot of the tower. Then, the length of the flagstaff(in metres), is

  • yx2 - y2x2 +  y2

  • xy2 + x2y2 - x2

  • xx2 + y2x2 - y2

  • xx2 - y2x2 + y2


228.

sin120°cos150° - cos240°sin330° is equal to :

  • 1

  • - 1

  • 23

  • - 3 + 14


Advertisement
229.

csc15° + sec15° is equal to :

  • 22

  • 6

  • 26

  • 6 + 2


230.

If 5cos(x) + 12cos(y) = 13, then the maximum value of 5 sin(x) + 12sin(y) is :

  • 12

  • 120

  • 20

  • 13


Advertisement