Let u = 5a + 6b + 7c, v = 7a - 8b + 9c and w = 3 a + 20b + 5c, wh

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

101.

If a = 2i + 2j - k, b = αi + βj + 2k and a + b = a - b, then α + β is equal to

  • 2

  • 1

  • 0

  • - 1


102.

If the projection of b on a is twice the projection of a on b, then b - a is equal to 

  • a - b

  • a + b

  • b

  • a


103.

If a = i - j and b = j + k, then then a × b2 + a . b2 is equal to

  • 2

  • 2

  • 6

  • 4


104.

If a = 1, b = 3 and a - b = 7, then the angle between a and b is

  • 0

  • π6

  • π4

  • π3


Advertisement
105.

A vector of magnitude 7 units, parallel to the resultant of the vectors a = 2 i - 3j - 2k and b = - i + 2j + k, is

  • 73i +j+k

  • 7(i - j - k)

  • 73i - j +k

  • 73i - j - k


106.

If p and q are non-collinear unit vectors and p + q = 3, then (2p - 3q) · (3p + q) is equal to

  • 0

  • 13

  • - 13

  • - 12


107.

The triangle formed by the three points whose position vectors are 2i + 4j - k, 4i + 5j + k and 3i + 6j - 3k, is

  • an equilateral triangle

  • a right angled triangle but not isosceles

  • an isosceles triangle but not right angled triangle

  • a right angled isosceles triangle


108.

If (1, 2, 4) and (2, - 3λ, - 3) are the initial and terminal points of the vector i + 5j - 7k, then the value of λ is

  • 73

  • - 73

  • - 53

  • 53


Advertisement
Advertisement

109.

Let u = 5a + 6b + 7c, v = 7a - 8b + 9c and w = 3 a + 20b + 5c, where a, b and c are non-zero vectors. If u = lv + mw, then the values of l and m respectively are

  • 12, 12

  • 12, - 12

  • - 12, 12

  • 13, 13


A.

12, 12

Given, u = 5a + 6b + 7c

v = 7a - 8b + 9c

and w = 3a + 20b + 5c

Now, u = lv + mw

 5a + 6b + 7c = l7a - 8b + 9c + m7a - 8b + 9c                                    + m3a + 20b + 5c 5a + 6b + 7c = 7l + 3ma + 20m - 8lb                                    + 5m + 9lc

On comparing, we get

      7l + 3m = 5      ...(i)

     20m - 8l = 6      ...(ii)

and 5m + 9l = 7     ...(iii)

On multiply by 4 in Eq. (iii) and then subtracting from Eq. (ii), we get

  8l - 36l = 6 - 28

 - 44l = - 22

 l = 12 then from Eq. (ii), m = 12


Advertisement
110.

If α = 3i - k and β = 5 and α . β = 3 then the area of the parallelogram for which α and β are adjacent sides, is

  • 172

  • 142

  • 72

  • 41


Advertisement