If the direction cosines of a vector of magnitude 3 are 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

111.

If the vectors PQ = - 3i + 4j + 4k and PR = 5i - 2j + 4k are the sides of a PQR, then the length of the median through P is

  • 14

  • 15

  • 17

  • 18


112.

If a = i^ +2j^ + 2k^, b = 5 and the angle between a and b is π6, then the area of the triangle formed by these two vectors as two sides is

  • 154

  • 152

  • 15

  • 1532


113.

If a - b = 0 and a + b makes an angle of 60° with a, then

  • a = 2b

  • 2a = b

  • a = 3b

  • 3a = b


114.

If i^ + j^, j^ + k^, i^ + k^ are the position vectors of the vertices of a ABC taken in order, then A is equal to

  • π2

  • π5

  • π6

  • π3


Advertisement
115.

Let a = i^ - 2j^ + 3k^. If b is a vector such that a · b = b2 and  a - b = 7, then b is equal to

  • 7

  • 3

  • 7

  • 3


116.

If a, b and c are three non-zero vectors such that each one of them being perpendicular to the sum of the other two vectors, then the value of a + b + c2 is

  • a2 + b2 + c2

  • a + b + c

  • 2a2 + b2 + c2

  • 12a2 + b2 + c2


117.

Let u, v and w be vectors such that u + v + w = 0. If u = 3, v = 4 and w = 5, then u - v + v · w + w · u is equal to

  • 0

  • - 25

  • 25

  • 50


118.

If λ3i^ + 2j^ - 6k^ is a unit vector, then the value of λ are

  • ± 17

  • ± 7

  • ± 43

  • ± 143


Advertisement
Advertisement

119.

If the direction cosines of a vector of magnitude 3 are 23, - a3, 23, a >0, then the vector is

  • 2i^ + j^ + 2k^

  • 2i^ - j^ + 2k^

     

  • i^ - 2j^ + 2k^

  • i^ + 2j^ + 2k^


B.

2i^ - j^ + 2k^

 

Given,  direction cosines are 23, - a3, 23Then, direction ratios are 2, - a, 2.According to the question,       3 = 22 + - a2 + 22       9 = 8 +a2 a2 = 1  a = ± 1  a = 1         a > 0So, the required vector is 2i^ - j^ + 2k^.


Advertisement
120.

Equation of the plane through the mid-point of the line segment joining the points P(4, 5, - 10), Q(- 1, 2, 1) and perpendicular to PQ is

  • r . 32i^ + 72j^ - 92k^ = 45

  • r . - i^ + 2j^ + k^ = 1352

  • r . 5i^ +3j^ - 11k^ + 1352 = 0

  • r . 5i^ + 3j^ - 11k^ = 1352


Advertisement