If a = 2i^ - j^ - mk^ and b =&

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

121.

A unit vector parallel to the straight line x - 23 = 3 + y- 1 = z - 2- 4 is

  • 1263i^ - j^ + 4k^

  • 126i^ + 3j^ - k^

  • 1263i^ - j^ - 4k^

  • 1263i^ + j^ + 4k^


122.

The angle between the two vectors i^ + j^ + k^ and 2i^ - 2j^ + 2k^ is equal to

  • cos-123

  • cos-116

  • cos-156

  • cos-113


123.

If a = i^ + j^ + k^, b = 4i^ + 3j^ + 4k^ and c = i^ + αj^ + βk^ are copalnar and c = 3, then

  • α = 2, β = 1

  • α = 1, β = ± 1

  • α = ± 1, β = 1

  • α = ± 1, β = - 1


124.

Let P (1, 2, 3) and Q (- 1, - 2, - 3) be the two points and let O be the origin. Then, PQ + OP is equal to

  • 13

  • 14

  • 24

  • 12


Advertisement
125.

Let ABCD be a parallelogram. If AB = i^ + 3j^ + 7k^, AD = 2i^ + 3j^ - 5k^ and p is a unit vector parallel to AC, then p is equal to

  • 132i^ + j^ + 2k^

  • 132i^ + 2j^ + 2k^

  • 173i^ + 6j^ + 2k^

  • 176 + 2j^ + 3k^


126.

Let OB = i^ + 2j^ + 2k^ and OA = 4i^ + 2j^ + 2k^. The distance of the point B from the straight line passing through A and parallel to the vector 2i^ + 3j^ + 6k^ is

  • 759

  • 579

  • 357

  • 957


127.

If a = λi^ + 2j^ + 2k^ and b = 2i^ + 2j^ + λk^  are at right angle, then the value of a + b - a - b is

  • 2

  • 1

  • 0

  • - 1


128.

Let the position vectors of the points A, B and C be a, b and c, respectively. Let Q be the point of intersection of the medians of the ABC. Then, QA + QB + QC is equal to

  • a + b + c2

  • 2a + b + c

  • a + b + c

  • 0


Advertisement
Advertisement

129.

If a = 2i^ - j^ - mk^ and b = 47i^ - 27j^ + 2k^  are collinear, then the value of m is equal to

  • - 7

  • - 1

  • 2

  • 7


A.

- 7

Given, a = 2i^ - j^ - mk^and     b = 47i^ - 27j^ + 2k^      b = 272i^ - j^ + 7k^Since, a and b are collinear               a = λb2i^ - j^ - mk^ = 272i^ - j^ + 7k^Comparing both sides,.we get - m = 7 m = - 7


Advertisement
130.

Let a = 2i^ + 5j^ - 7k^ and b = i^ + 3j^ - 5k^.  Then, (3a - 5b) . (4a × 5b) is equal to

  • - 7

  • 0

  • - 13

  • 1


Advertisement