Volume of the parallelopiped having vertices at 0 = (0, 0, 0), A

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

191.

If the vectors i^ - 3j^ + 2k^- i^ + 2j^ represents the diagonals of a parallelogram, then its area will be

  • 21

  • 212

  • 221

  • 214


192.

The position vector of the points A, B, C are 2i^ + j^ - k^3i^ - 2j^ + k^ and i^ + 4j^ - 3k^ respectively. These points

  • form an isosceles triangle

  • form a right angled triangle

  • are collinear

  • form a scalene triangle


193.

If a = 2, b = 3 and a, b are mutually perpendicular, then the area of the triangle whose vertices are 0, a + b, a - b is

  • 5

  • 1

  • 6

  • 8


194.

Given p = 3i^ +2j^ + 4k^, a = i^ +j^c = i^ +k^ and p = xa + yb + zc then x, y, z are respectively

  • 32, 12, 52

  • 12, 32, 52

  • 52, 32, 12

  • 12, 52, 32


Advertisement
195.

If 2a + 3b - 5c = 0, then ratio in which c divides AB is

  • 3 : 2 internally

  • 3 : 2 externally

  • 2 : 3 internally

  • 2 : 3 externally


Advertisement

196.

Volume of the parallelopiped having vertices at 0 = (0, 0, 0), A = (2, - 2, 1), B = (5, - 4, 4) and C = (1, - 2, 4) is

  • 5 cu unit

  • 10 cu unit

  • 15 cu unit

  • 20 cu unit


B.

10 cu unit

Given, OA = 2i^ - 2j^ + k^OB = 5i^ - 4j^ + 4k^ and OC = i^ - 2j^ + 4k^Volume of parallelopiped = OA OB OC                                       = 2- 215- 441- 24= 2- 16 + 8 + 220 - 4 + 1- 10 + 4= 10 cu unit


Advertisement
197.

If a, b, c are three non-coplanar vectors and p, q, r are defined by the relations

p = b ×  ca b c, q = c ×  aa b c and r = b ×  aa b c

then a . p + b . q + c . r is equl to

  • 0

  • 1

  • 2

  • 3


198.

The volume of a parallelopiped whose coterminous edges are  2a, 2b, 2c is

  • 2a b c

  • 4a b c

  • 8a b c

  • a b c


Advertisement
199.

The position vectors of vertices of a ABC are 4i^ - 2j^, i^ + 4j^ - 3k^ and - i^ + 5j^+ k^ respectively, then ABC is equal to

  • π6

  • π4

  • π3

  • π2


200.

If u = a - b and v = a + b and a = b = 2, then u × v is equal to

  • 216 - a . b2

  • 16 - a . b2

  • 24 - a . b2

  • 24 + a . b2


Advertisement