Forces ofmagnitudes 3, P, 5, 10 and Q are respectively acting alo

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

221.

A girl walks 4 km towards West, then she walks 3 km in a drection 30° East of North and stops. Then, the girl's displacement from herinitial point of departures is

  • - 52i^ + 332j^

  • 12i^ + 32j^

  • - 12i^ + 332j^

  • None of these


222.

If a = i^ + j^ + k^,b = 4i^ + 3j^ + 4k^ and c = i^ + αj^ + βk^ are linearly dependent vectors and c = 3, then the value of α and β are respectively

  • ± 1, 1

  • ± 2, 1

  • 0, ± 1

  • None of these


223.

The projection of the vector a = i^ - 2j^ + k^ on  the vextor b = 4i^ - 4j^ + 7k^ is

  • 919

  • 199

  • 9

  • 19


224.

Forces of magnitude 5 and 3 units acting in the directions 6i^ + 2j^ +3k^ and 3i^ - 2j^ +6k^ respectively act on a particle which is displaced from the point (2, 2, - 1) to (4, 3, 1). The work done by the forces is

  • 148 units

  • 1487 units

  • 787 units

  • None of these


Advertisement
225.

If a and b are unit vectors and θ is the angle between them, then la + bl < 1, if

  • θ = π2

  • θ < π3

  • π  θ > 2π3

  • π3 < θ < 2π3


226.

The points, whose position vectors are 60i + 3j, 40i - 8j and ai - 52j collinear, if

  • a = 40

  • a = - 40

  • a = 20

  • a = - 20


227.

In a ABC, AB = ri + j, AC = si - j if the area of triangle is of unit magnitude, then

  • r - s = 2

  • r + s = 1

  • r + s = 2

  • r - s = 1


228.

If a = i - j + k, a b = 0, a x b = c, where c = - 2i - j + k, then b 1s equal to

  • (1, 0, - 1)

  • (0, 1, 1)

  • (- 1, - 1, 0)

  • (- 1, 0, 1)


Advertisement
229.

The resultant of P and Q is R. If Q is doubled, R is also doubled and if Q is reversed, R is again doubled. Then, P2 : Q2 : R2 gven by

  • 2 2 3

  • 3 2 2

  • 2 3 2

  • 2 3 1


Advertisement

230.

Forces ofmagnitudes 3, P, 5, 10 and Q are respectively acting along the sides AB, BC, CD, AD and the diagonal CA of a rectangle ABCD, where AB = 4m and BC = 3m. Ifthe resultant is a single force along the other diagonal BD, then P, Q and the resultant are

  • 4, 10512, 121112

  • 5, 6, 7

  • 312, 8, 912

  • None of the above


A.

4, 10512, 121112

ABCD is a rectangle in which AB = 4m and BC =3m

Then, tanθ = BCAB = 34

The forces 3, P, 5, 10 and Q newtons have the resultant R Newton as shown in the figure.

Rcosθ = Qcosθ + 5 - 3             = Qcosθ + 2                   ...iand Rsinθ = P + 10 - Qsinθ   ...iiand Q ABsinθ + 5BC = 10 . AB        sinθ = 35 and cosθ = 45 125Q = 40 - 15 = 25      Q = 12512 = 10512 newtonThen, find R from Eq. (i) and P from Eq. (ii)    4R5 = 12512 × 45 + 2 4R = 1253 + 10 = 1553   R = 15512 = 121112and 15512 × 35 = P + 10 - 12512 × 35           1554 = 5P + 50 - 1254              5P = 1554 + 1254 - 50             5P = 2804 - 50 = 70 - 50 = 20               P = 4Hence, option (a) 4, 10512, 121112 is correct.


Advertisement
Advertisement