If 2i + 3j, i + j + k and λi + 4j + 2k taken in an order a

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

331.

If 2i + 3j, i + j + k and λi + 4j + 2k taken in an order are coterminous edges of a parallelopiped of volume 2 cu units, then value of λ is

  • - 4

  • 2

  • 3

  • 4


D.

4

Given,

let A = 2i + 3j + 0k

     B = i + j + k

     C = λi + 4j + 2k

If A, B, C are the coterminous edges of a parallelepiped then its volume is

      = A× B . C= 2i + 3j + 0k × i + j +k . λi + 4j + 2k= 3i - 2j - k . λi + 4j + 2k= 3λ - 8 - 2= 3λ - 10

Given volume = 2    3λ - 10 = 2             3λ = 12               λ = 4


Advertisement
332.

A unit vector perpendicular to both i + j + k and 2i + j + 3k is

  • 2i - j - k6

  • 2i - j - k6

  • 2i - j - k

  • 3i + j - 2k6


333.

If a, b and c are three non-coplanar vectors and p, q and r are vectors defined by p = b × ca b c, q = c × aa b c and r = a × ba b c, then the value of (a + b) . p + (b + c) . q + (c + a) . r is equal to

  • 0

  • 1

  • 2

  • 3


334.

If (a × b)2 + (a . b)2 = 144 and a = 4, b is equal to

  • 16

  • 8

  • 3

  • 12


Advertisement
335.

If i + j - k and 2i - 3j + k are adjacent sides of a parallelogram, then the lengths of its diagonals are

  • 3, 14

  • 13, 14

  • 21, 3

  • 21, 13


336.

If the volume of the parallelepiped formed by three non-coplanar vectors a, b and c is 4 cu units, then [a x b b x c c x a] is equal to

  • 64

  • 16

  • 4

  • 8


337.

If a = (1,2, 3), b = (2, - 1, 1), c = (3, 2, 1) and a × b × c = αa + βb + γc, then

  • α = 1, β = 10, γ = 3

  • α = 0, β = 10, γ = - 3

  • α + β + γ = 8

  • α = β = γ = 0


338.

If a  b and a + b  a + mb, then m is equal to

  • - 1

  • 1

  • - a2b2

  • 0


Advertisement
339.

If a, b and c are unit vectors such that a + b + c = 0, then a . b + b . c + c . a is equal to

  • 32

  • - 32

  • 23

  • 12


340.

If a is a vector perpendicular to both b and c, then

  • a . b × c = 0

  • a × b × c = 0

  • a × b + c = 0

  • a + b + c = 0


Advertisement