If a, b and c are unit vectors such that a + b + c = 0, then a .

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

331.

If 2i + 3j, i + j + k and λi + 4j + 2k taken in an order are coterminous edges of a parallelopiped of volume 2 cu units, then value of λ is

  • - 4

  • 2

  • 3

  • 4


332.

A unit vector perpendicular to both i + j + k and 2i + j + 3k is

  • 2i - j - k6

  • 2i - j - k6

  • 2i - j - k

  • 3i + j - 2k6


333.

If a, b and c are three non-coplanar vectors and p, q and r are vectors defined by p = b × ca b c, q = c × aa b c and r = a × ba b c, then the value of (a + b) . p + (b + c) . q + (c + a) . r is equal to

  • 0

  • 1

  • 2

  • 3


334.

If (a × b)2 + (a . b)2 = 144 and a = 4, b is equal to

  • 16

  • 8

  • 3

  • 12


Advertisement
335.

If i + j - k and 2i - 3j + k are adjacent sides of a parallelogram, then the lengths of its diagonals are

  • 3, 14

  • 13, 14

  • 21, 3

  • 21, 13


336.

If the volume of the parallelepiped formed by three non-coplanar vectors a, b and c is 4 cu units, then [a x b b x c c x a] is equal to

  • 64

  • 16

  • 4

  • 8


337.

If a = (1,2, 3), b = (2, - 1, 1), c = (3, 2, 1) and a × b × c = αa + βb + γc, then

  • α = 1, β = 10, γ = 3

  • α = 0, β = 10, γ = - 3

  • α + β + γ = 8

  • α = β = γ = 0


338.

If a  b and a + b  a + mb, then m is equal to

  • - 1

  • 1

  • - a2b2

  • 0


Advertisement
Advertisement

339.

If a, b and c are unit vectors such that a + b + c = 0, then a . b + b . c + c . a is equal to

  • 32

  • - 32

  • 23

  • 12


B.

- 32

Given that, a, b and c are unit vectorsi.e., a = b = c = 1          ...iNow, we havea + b + c = 0 a +b +c2 = 02    squaring on both sides a2 + b2 + c2 + 2a . b + b . c + c . a = 0 1 + 1 + 2a . b + b . c + c . a = 0        from Eq.(i) a . b + b . c + c . a = - 32


Advertisement
340.

If a is a vector perpendicular to both b and c, then

  • a . b × c = 0

  • a × b × c = 0

  • a × b + c = 0

  • a + b + c = 0


Advertisement