I. Two non-zero, non-collinear vectors arelinearly independent.II

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

411.

If D, E and F are respectively the mid-points of AB, AC and BC in ABC, then BE + AF is equal to :

  • DC

  • 12BF

  • 2BF

  • 32BF


412.

Let a, b, c be the position vectors of the vertices A, B, C respectively of ABC. Thevector area of ABC is :

  • 12ab × c + bc × a + ca × b

  • 12a × b + b × c + c × a

  • 12a + b + c

  • 12ab c + bc a + ca b


413.

If a = i^ + j^ + k^b = i^ + j^c = i^ and a × b × c = λa + μb, then λ + μ is equal to :

  • 0

  • 1

  • 2

  • 3


414.

If i^  + 2j^ + 3k^,  3i^  + 2j^ + k^ are sides of a parallelogram, then a unit vector is parallel to one of the diagonals of the parallelogram is

  • i^ + j^ + k^3

  • i^ + j^ - k^3

  • i^  -  j^ + k^3

  • - i^ + j^ + k^3


Advertisement
415.

If G is the centroid of the ABC, then GA + BG + GC is equal

  • 2GB

  • 2GA

  • 0

  • 2BG


416.

If the vectors i^ + 3j^ + 4k^,  λi^ - 4j^ + k^ are orthogonal to each other, then λ is equal to

  • 5

  • - 5

  • 8

  • - 8


417.

The vector c . (b + c) x (a + b + c) is equal to

  • c . b x a

  • 0

  • c . a x b

  • a . c x b


418.

If the vector a = 2i^ + 3j^ + 6k^ and b are collinear and b = 21, then b is equal to

  • ± 2i^ + 3j^ + 6k^

  • ± 32i^ + 3j^ + 6k^

  • i^ + j^ + k^

  • ± 212i^ + 3j^ + 6k^


Advertisement
419.

If a and b are unit vectors, then the vector (a + b) x (a x b) is parallel to the vector

  • a - b

  • a + b

  • 2a - b

  • 2a + b


Advertisement

420.

I. Two non-zero, non-collinear vectors arelinearly independent.

II. Any three coplanar vectors are linearlydependent.Which ofthe above statements is/are true?

  • Only I

  • Only II

  • Both I and II

  • Neither I nor II


C.

Both I and II

I: It is true that non-zero, non-collinear vectors arelinearly mdependent

II : It is also true that any three coplanar vectors are linearly dependent.

Thus, both I and II are true.


Advertisement
Advertisement