Let a→ = i^ - 2j^ + 3k^,&

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

431.

The volume (in cubic units) of the tetrahedron with edges i^ + j^ +k^,  i^ -  j^ +k^ and  i^ + 2j^ - k^ is 

  • 4

  • 23

  • 16

  • 13


432.

Let a = a1i^ +a2j^ + a3k^Assertion A : The identitya × i^2 +a × j^2 + a × k^2 = 2a2 holds for  aReason R : a × i^ = a3j^ - a2k^,a × j^ = a1k^ - a3i^,  a × k^ = a2i^ - a1j^Wich of the following is correct ?

  • Both (A) and (R) are true and (R) is the correct reason for (A)

  • Both (A) and (R) are true but (R) is not the correct reason for (A)

  • (A) is true, (R) is false

  • A) is false, (R) is true


433.

The position vectors of P and Q are a and b respectively. If R is a point on PQ such that PR = 5PQ, then the position vector of R is

  • 5b - 4a

  • 5b + 4a

  • 4b - 5a

  • 4b + 5a


434.

If the points with position vectors 60i^ + 3j^, 40i^ - 8j^ and ai^ - 52j^ are collinear, then a is equal to  are collinear,then a is equal to

  • - 40

  • - 20

  • 20

  • 40


Advertisement
435.

If the position vectors of A, B and C are respectively 2I^ - J^ + K^, I^ - 3J^ - 5K^ and 3i^ - 4j^ - 4k^, then cos2A = ? 

  • 0

  • 641

  • 3541

  • 1


436.

Let a be a unit vector,  b = 2i^ + j^ - k^ and c =i^ + 3k^. Then, maximum value of[a b c] is

  • - 1

  • 10 + 6

  • 10 - 6

  • 59


 Multiple Choice QuestionsMatch The Following

437.

If a = i^ + j^ + k^, b = i^ - j^ + k^, c = i^ + j^ - k^ and d =i^ - j^ - k^, then observe the following lists
  List-I   List-II
(i) a . b (A) a . d
(ii) b . c (B) 3
(iii) a b c (C) b . d
(iv) b × c (D) 2i^ - k^
    (E) 2j^ + 2k^
    (F) 4

Then, correct match of List_I to List-II is

A. (i) (ii) (iii) (iv) (i) C A B F
B. (i) (ii) (iii) (iv) (ii) C A F E
C. (i) (ii) (iii) (iv) (iii) A C B F
D. (i) (ii) (iii) (iv) (iv) A C F D

 Multiple Choice QuestionsMultiple Choice Questions

438.

If m1, m2, m3 and m4 are respectively the magnitudes of the vectorsa1 = 2i^ - j^ + k^, a2 = 3i^ - 4j^ - 4k^,a3 = i^ + j^ - k^ and  a4 = - i^ +  3j^ + k^, then the correct order of m1, m2, m3 and m4 is 

  • m3 < m1 < m4 < m2

  • m3 < m1 < m2 < m4

  • m3 < m4 < m1 < m2

  • m3 < m4 < m2 < m1


Advertisement
Advertisement

439.

Let a = i^ - 2j^ + 3k^, b = 2i^ + 3j^ - k^, c = i^ - 2j^ + 3k^. If c is parallel to the plane containing a, b, then λ is equal to

  • 0

  • 1

  • - 1

  • 2


A.

0

Given that, a = i^ - 2j^ + 3k^,b = 2i^ + 3j^ - k^,c = i^ - 2j^ + 3k^

Also, since a and b lies in the same plane, then a × b is perpendicular vector to this plane. Given that vector c is parallel to the plane containing a and b, so vector a × b also perpendicular to the vector c i.e., θ = 90°. So, a × bc  should be equal to zero

or a × bc = 0          ...(i)

a × b = i^j^k^1- 2323- 1            = 2 - 9i^ + 6 + 1j^ + 3 + 4k^            = - 7i^ + 7j^ + 7k

Then, from Eq. (i)

- 7i^ + 7j^ + 7k^λi^ + j^ + 2λ - 1k^ = 0                   - 7λ + 7 + 72λ - 1 = 0

 - 7λ + 7 + 14λ - 7 = 0                                7λ = 0                                   λ= 0Hence, the value of λis 0.


Advertisement
440.

If three unit vectors a, b, c satisfy a + b + c, then the angle between a and b is

  • 2π3

  • 5π6

  • π3

  • π6


Advertisement