If a = 2i^  + 3j^ - 5k^,&

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

471.

If a × b b × c c × a = λa b c2, then λ is  equal to 

  • 0

  • 1

  • 2

  • 3


472.

The cartesion equation of the plane passing through the point (3, - 2, - 1) and parallel to the vectors b = i^ - 2j^ + 4k^ and c = 3i^ + 2j^ - 5k^ is

  • 2x - 17y - 8z + 63 = 0 

  • 3x + 17y + 8z + 36 = 0

  • 2x + 17y + 8z + 36 = 0

  • 3x - 16y + 8z - 63 = 0


473.

If z1 = 1, z2 = 2, z3 = 3 and 9z1z2 + 4z1z3 + z2z3 = 12, then the value of z1 +z2 + z3 is

  • 3

  • 4

  • 8

  • 2


474.

The cartesian equation of the plane whose vector equation is γ = 1 + λ - μi^ + 2 - λj^ + 3 - 2λ + 2μk^, where λ, μ are scalars, is 

  • 2x + y = 5

  • 2x - y = 5

  • 2x - z = 5

  • 2x + z = 5


Advertisement
475.

For three vectors p, q and r, if r = 3p +4q and 2r = p - 3q, then

  • r < 2q and r, q have the same direction

  • r > 2q and r, q have opposite directions

  • r < 2q and r, q have opposite directions

  • r > 2q and r, q have same directions


Advertisement

476.

If a = 2i^  + 3j^ - 5k^, b = mi^ + nj^ + 12k^ and a × b = 0, then m, n = ?

  • - 245, - 365

  •  - 245, 365

  • 245, - 365

  • 245, 365


A.

- 245, - 365

Given, a = 2i^  + 3j^ - 5k^, b = mi^ + nj^ + 12k^ Since a × b = 0 a bHence, 2m = 3n =  - 512 m = - 245 and n = - 365


Advertisement
477.

If a = 3, b = 4 and the angle between a and b is 120°, then 4a +3b = ?

  • 25

  • 7

  • 13

  • 12


478.

If a, b, c are non-zero vectors such that a × b × c = 13bca, c  a and θ is theangle between the vectors b and c, then sinθ = ?

  • 223

  • 13

  • 23

  • 23


Advertisement
479.

If αα × β + bβ × γ + cγ × α = 0 and atleast one of the scalars a,b, c is non-zero,then the vectors α, β, γ are

  • parallel

  • non coplanar

  • coplanar

  • mutually perpendicular


480.

If a non-zero vector a is parallel to the line of intersection of the plane determined by the vectors j^ - k^, 3j^ - 2k^ the plane determined by the vectors 2i^ + 3j^,  i ^- 3j^ then the angle between the vectors a and i^ + j^ + k^  is

  • sin-123

  • cos-1± 23

  • tan-13

  • cos-1 ± 13


Advertisement