Let a, b, c ∈ R be such&n

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

481.

If three numbers are drawn at random successively without replacement from a set S = {1, 2, ... 10}, then the probability that the minimum of the chosen numbers is 3 or their maximum is 7

  • 1140

  • 540

  • 340

  • 140


482.

 If the points having the position vectors3i^ - 2j^ - k^, 2i + 3j^ - 4k^, - i^ + j^ + 2k^ and4i^ + 5j^ + λk^ are coplanar, then λ = ?

  • - 14617

  • 8

  •  - 8

  • 14617


483.

If a, b and c are non-zero vectors such that a and b are not perpendicular to each other, then the vector r which is perpendicular to a and satisfying r x b = c x b  is

  • a × b × cc a

  • b × a × cb c

  • b × c × aa b

  • c × b × aac


484.

The triad (x, y, z) of real number such that3i^ - j^ + 2k^ = 2i^ + 3j^ - k^x + i^ - 2j^ + 2k^y +  - 2i^ + j^ - 2k^z is

  • (- 2, 5, 3)

  • (2, - 5, 3)

  • (2, 5, 3)

  • (2, 5, - 3)


Advertisement
485.

If the volume of the tetrahedron formed by the coterminous edges a, b and c is 4, then the volume of the parallelopiped formed by the coterminous edges a x b, b x c and c x a is

  • 576

  • 48

  • 16

  • 144


 Multiple Choice QuestionsShort Answer Type

486.

Let a, b and c be three unit vectors such that a - c2 + a - c2 = 8. Then a + 2b2 + a + 2c2 = ?


487.

Let the position vectors of points 'A' and 'B' be i^ + j^ + k^ and 2i^ + j^ + k^, respectively. A point 'P' divides the line segment AB internally in the ratio λ : 1 (λ > 0). If O is the origin and OB . OP - 3OA × OP2 = 6 then λ is equal to


 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

488.

Let a, b, c  R be such that a2 + b2 + c2 = 1. If  acosθ = bcosθ + 2π3 = ccosθ + 4π3, where θ = π9, then the angle between the vectors ai^ + bj^ + ck^ and bi^ + cj^ +k^  is:

  • 0

  • 2π3

  • π2

  • π9


C.

π2

acosθ = bcosθ + 2π3 = ccosθ + 4π3 = ka = kcosθ, b = kcosθ + 2π3, c = kcosθ + 4π3ab + bc + ca = k2cosθ + 4π3 + cosθ + cosθ + 2π3 cosθ + 4π3 cosθcosθ + 2π3= k2cosθ + 2cosθ + π . cosπ3 cosθcosθ + 2π3cosθ + 4π3= k2cosθ - 2cosθ . 12cosθ . cosθ + 2π3 . cosθ + 4π3 = 0cosϕ = ai^ + bj^ + ck^ . bi^ + cj^ + ak^a2 +b2 + c2 . b2 + c2 + a2= ab +bc + ca = 0ϕ = π2


Advertisement
Advertisement
489.

Let x0 be the point of local maxima of fx = a . b × c, where a = xi^ - 2j^ +3k^, b = - 2i^ + xj^ - k^ andc = 7i^ - 2j^ + xk^. Then the value of a . b + b . c + c . a at x = x0

is :

  • - 22

  • 14

  •  - 4

  •  - 30


490.

Suppose the vectors x1, x2 and x3 are the solutions of the system of linear equations, Ax = b when the vector b on the right side is equal to b1, b2 and b3 respectively. If

x1 = 111, x2 =  021, x3 =  001, b1 =  100, b2 =  020,

then the determinant of A is equal of A is

  • 32

  • 4

  • 12

  • 2


Advertisement