If the volume of a parallelopiped, whose conterminous edges are given by the vectors a→ = i^ + j^ + nk^, b→ = 2i^ + 4j^ - nk^ and c→ = i^ + nj^ + 3k^ n ≥ 0, is 158 cu-units, then :
n = 7
n = 9
b→ . c→ = 10
a→ . c→ = 17
Let the vectorsa→, b→, c→ be such that a→ = 2, b→ = 4 and c→ = 4. If the projection of b→ on a→ is equal to the projection of c→on a→ and b→ is perpendicular to c→, then the value of a→ + b→ + c→is .......
Ans : 6
b→ . a→ = c→ . a→a→ + b→ - c→2 = a→2 + b→2 + c→2 + 2a→ . b→ - b→ . c→ - a→ . c→= 4 + 16 + 16 + 2a→ . b→ - 0 - a→ . b→ = 36⇒ a→ + b→ - c→ = 6
If a→ and b→ are unit vectors, then the greatest value of 3a→ + b→ + a→ - b→ = ?