If the volume of a parallelopiped, whose conterminous edges are given by the vectors a→ = i^ + j^ + nk^, b→ = 2i^ + 4j^ - nk^ and c→ = i^ + nj^ + 3k^ n ≥ 0, is 158 cu-units, then :
n = 7
n = 9
b→ . c→ = 10
a→ . c→ = 17
Let the vectorsa→, b→, c→ be such that a→ = 2, b→ = 4 and c→ = 4. If the projection of b→ on a→ is equal to the projection of c→on a→ and b→ is perpendicular to c→, then the value of a→ + b→ + c→is .......
If a→ and b→ are unit vectors, then the greatest value of 3a→ + b→ + a→ - b→ = ?
Ans : 4
Let a→ ∧ b→ = α3a→ + b→ + a→ - b→ = 32 + 2cosα= 32 × 2cos2α2 + 2 × 2sin2α2= 23cosα2 + sinα2Maximum value = 22 = 4