In the binary equation (1p101)2 + (10q1)2 = (100r 00)2 where p, q

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

If C20, n + 2 = C20, n - 2, then what is n = ?

  • 8

  • 10

  • 12

  • 16


2.

In the expansion of (1 + x)43, if the coefficients of (2r + 1)th and (r + 2)th terms are equal, then what is the value of r (r  1) ?

  • 5

  • 14

  • 21

  • 22


3.

If the coefficients of am and an in the expansion of (1+ a)m + n are α and β, then which one of the following is correct ?

  • α = 2β

  • α = β

  • 2α = β

  • α = m + nβ


4.

What is the coefficient of the middle term in the binomial expansion of (2 + 3)4

  • 6

  • 12

  • 108

  • 216


Advertisement
5.

Let the coefficient of the middle term of the binomial expansion of (1 + x)2n be a and those of two middle terms of the binomial expansion of (1 + x)2n - 1 be β and γ. Which one of the following relations is correct ?

  • α > β + γ

  • α < β + γ

  • α = β + γ

  • α = βγ


6.

The expansion of (x -  y)n, n  > 5 is done in  the descending powers of r.  If the sum of the fifth and sixth term is zero, then xy = ?

  • n - 56

  • n - 45

  • 5n - 4

  • 6n - 5


Advertisement

7.

In the binary equation (1p101)2 + (10q1)2 = (100r 00)2 where p, q and r are binary digits, what are the possible values of p, q and r respectively ?

  • 0, 1, 0

  • 1, 1, 0

  • 0, 0, 1

  • 1, 0, 1


A.

0, 1, 0

(1p101)2 + (10q1)2 = (100r 00)2 1 × 24 +p × 23 +q × 21 + 1 × 20 + 1 × 23 + 0 × 22 + q × 21 +1 × 20= 1 × 25 +0 + 0 +r × 22 + 0 + 0 16 + 8p + 4 + 1 + 8 + 2q +1= 32 + 4rfrom option,substitute p = 0, q = 1, r = 0 we get ,0 + 21 = 2 +0 2 = 2 Option A is correct.


Advertisement
8.

In the expansion of (1 + x)50, the sum of the coefficients of odd powers of x is :

  • 226

  • 249

  • 250

  • 251


Advertisement
Advertisement