If y = ex2sin2x, then what is 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1.

What is the general solution of the differential equation dydx + xy = 0 ?

  • x2 + y2 = c

  • x2 - y2 = c

  • x2 + y2 = cxy

  • x + y = c


2.

The  solution  of  the  differential  equation dydx = cosy - x + 1 is : 

  • exsecy - x - tany - x = c

  • exsecy - x + tany - x = c

  • exsecy - xtany - x = c

  • ex = csecy - x + tany - x


3.

If y = acos2x + bsin2x, then :

  • d2ydx2 + y = 0

  • d2ydx2 + 2y = 0

  • d2ydx2 -4y = 0

  • d2ydx2 + 4y = 0


4.

The differential equation of the system of circles touching the y-axis at the origin is : 

  • x2 + y2 - 2xydydx = 0

  • x2 + y2 +2xydydx = 0

  • x2 - y2 + 2xydydx = 0

  • x2 - y2 - 2xydydx = 0


Advertisement
5.

Consider the following in respect of the differential equation : 

d2ydx2 + 2dydx2 + 9y = x

  1. The degree of the differential equation is 1.
  2. The order of the differential equation is 2.

Which of the above statements is/are correct?

  • 1 only

  • 2 only

  • Both 1 and 2

  • Neither 1 nor 2


6.

What is the solution xdy - ydx = 0 ?

  • xy = c

  • y = cx

  • x + y = c

  • x - y = c


7.

The order and degree of the differential equation y2  = 4a(x - a), where 'a'· is an arbitrary constant, are respectively : 

  • 1, 2

  • 2, 1

  • 2, 2

  • 1, 1


8.

Which one of the following differential equations has a periodic solution ?

  • d2xdt2 + μx = 0

  • d2xdt2 - μx = 0

  • xdxdt + μt = 0

  • dxdt + μxt = 0


Advertisement
Advertisement

9.

If y = ex2sin2x, then what is dydx at x = π equal to ?

  • 1 + πeπ2

  • 2πeπ2

  • 2eπ2

  • eπ2


C.

2eπ2

    y = ex2 . sin2xdydx = ex2 . ddx . sin2x + sin2xddx . ex2dydx = 2 ex2 . cos2x + 2xsin2x . ex2dydxx = π = 2 × eπ2 . cos2πsin2πeπ2                = 2 × eπ2                  sin2π = 0     cos2π = 1


Advertisement
10.

What is the solution of :

(1 + 2x)dy - (1 - 2y)dx = 0 ?

  • x - y - 2xy = c

  • y - x - 2xy = c

  • y + x - 2xy = c

  • x + y + 2xy = c


Advertisement