The general solution ofdydx = ax + hby +

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

21.

What are the degree and order respectively of the differential equation

y = xdydx2 + dxdy2 ? 

  • 1, 2

  • 2, 1

  • 1, 4

  • 4, 1


22.

What is the differential equation corresponding to y2 - 2ay + x2 = a2 by eliminating a2 ? where p = dydx

  • x2 - 2y2p2 - 4pxy - x2 = 0

  • x2 - 2y2p2 + 4pxy - x2 = 0

  • x2 + 2y2p2 - 4pxy - x2 = 0

  • x2 + 2y2p2 - 4pxy + x2 = 0


23.

What is the general solution to the differential equation

ydx - (x + 2y2)dy = 0 ? 

  • x = y2 + cy

  • x = 2cy2

  • x = 2y2 + cy

  • None of the above


24.

Let f(x + y) = f(0)f(y) for all x and y. Then what is f'(5) equal to [where f'(x) is the derivative of f(x)] ?

  • f5f'(0)

  • f(5) - f'(0)

  • f5f0

  • f5 +f'(0)


Advertisement
25.

If y = cosxcosxcosx, then dydx = ?

  • - y2tanx1 - ylncosx

  • y2tanx1 + ylncosx

  • y2tanx1 - ylnsinx

  • y2tanx1 + ylnsinx


26.

If l1 = ddxesinxl2 = limh0esinx + h - esinxhl3 = esinxcosxdxthen which one of the following is correct ?

  • l1  l2

  • ddxl3 = l2

  • l3dx = l2

  • l2 = l3


Advertisement

27.

The general solution of

dydx = ax + hby + krepresents a circle only when

  • a = b = 0

  • a = - b  0

  • a = b  0, h = k

  • a = b  0


B.

a = - b  0

                dydx = ax + hby + kby + kdy = ax + hdx    by22 + ky = ax22 + hx + cax22 - by22 + hx - ky +c = 0                  a = - b  0


Advertisement
28.

The order and degree of the differential equation

1 + dydx23 = ρ2d2ydx22 are respectively :

  • 3 and 2

  • 2 and 2

  • 2 and 3

  • 1 and 3


Advertisement
29.

If y = cos-12x1 + x2, Then dydx = ?

  •  - 21 + x2 for all x < 1

  •  - 21 + x2 for all x > 1

  • 21 + x2 for all x < 1

  • None of the above


30.

The differential equation of minimum order by eliminating the arbitrary constants A and C in the equation y = A[sin (x + C) + cos(x + C)] is :

  • y'' + (sin(x) + cos(x))y' = 1

  • y'' = (sin(x) + cos(x))y'

  • y'' = (y')2 + (sin(x)cos(x))

  • y'' + y = 0


Advertisement