What are the order and degree respectively of the differential eq

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

31.

The solution of the differential equation dydx = 'x - y2ϕx is :

  • y = xϕx + c

  • y = ϕx x + c

  • y = ϕx +cx

  • y = ϕxx + c


32.

Let f(x) and g(x) be twice differentiable functions on [0, 2) satisfying f"(x) = g"(x), f'(1) = 4, g'(1) = 6,f(2) = 3 and g(2) = 9. Then what is f(x) - g(x) at x = 4 equal to

  • - 10

  •  - 6

  •  - 4

  • 2


Advertisement

33.

What are the order and degree respectively of the differential equation whose solution is y = cx + c2 - 3c32 + 2 where c is a parameter ?

  • 1, 2

  • 2, 2

  • 1, 3

  • 1, 4


D.

1, 4

   y = cx + c2 - 3c32 + 2dydx = c . 1dydx = c        y = xdydx + dydx2 - 3dydx32 + 2 Order = 1  Degree = 2


Advertisement
34.

If logaab = x, then what is logbab = ?

  • 1x

  • xx + 1

  • x1 - x

  • xx - 1


Advertisement
35.

If y = log10x + logx10 + logxx + log1010 then what is

dydxx = 10 = ?

  • 10

  • 2

  • 1

  • 0


36.

What are the degree and order respectivelof thdifferential equatiosatisfying

ey1 - x2 + x1 - y2 = cex, where c > 0, x < 1, y < 1 ?

  • 1, 1

  • 1, 2

  • 2, 1

  • 2, 2


37.

If xdy = ydx ydy, y > 0 and y(1) = 1, then whais y3) equal t?

  • 3 only

  •  - 1 only

  • Both - 1 and 3

  • Neither  - 1 nor 3


38.

What is the order of the differential equation dxdy + ydx = x3  ?

  • 1

  • 2

  • 3

  • Cannot be determined


Advertisement
39.

Whicone of the following differential equation is represents the family of straight lines which are aunit distance from the origi?

  • y - xdydx2 = 1 - dydx2

  • y + xdydx2 = 1 + dydx2

  • y - xdydx2 = 1 + dydx2

  • y + xdydx2 = 1 - dydx2


40.

What is the solution of x ≤ 4, y ≥ 0 and x ≤ 4, y ≤ 0 ?

  • x ≥ 4, y ≤ 0

  • x ≤ 4, y ≥ 0

  • x ≤ 4, y = 0

  • x ≥ 4, y = 0


Advertisement