Given thatan = ∫0πsinn + 1xsin2xdxWhat

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

21.

What is the solution of the differential equation

logdydx - a = 0

  • y = xea + c

  • x = yea + c

  • y = lnx + c

  • x = lny + c


22.

e - 1e - 2logxxdx = ?

  • 32

  • 52

  • 3

  • 4


23.

What is tan-1secx + tanxdx = ?

  • πx4 +x24 +c

  • πx2 + x24 + c

  • πx4 +πx24 + c

  • πx4 - x24 + c


24.

What is 02π1 + sinx2dx = ?

  • 8

  • 4

  • 2

  • 0


Advertisement
25.

lnx - 1dx - lnx - 2dx = ?

  • xlnx  - 1 + c

  • xlnx - 2 = c

  • xlnx + c

  • xlnx2 + c


26.

The value of 0π4tanxdx + 0π4cotxdx = ?

  • π4

  • π2

  • π22

  • π2


27.

Consider the functions

f(x) = xg(x) and g(x) = 1x

where [ . ] is the greatest integer function

  • 16

  • 13

  • 518

  • 536


28.

Consider the functions

f(x) = xg(x) and g(x) = 1x

where [ . ] is the greatest integer function

What is 131fxdx

  • 3772

  • 23

  • 1772

  • 37144


Advertisement
29.

Given that

an = 0πsinn + 1xsin2xdx

Consider the following statements :

  1. The sequence {a2n } is in AP with common difference zero.
  2. The sequence {a2n + 1} is in AP with common difference zero.

Which of the above statements is/are correct ?

  • 1 only

  • 2 only

  • both 1 and 2

  • neither 1 nor 2


Advertisement

30.

Given that

an = 0πsinn + 1xsin2xdx

What is an - 1 - an - 4 = ?

 

  •  - 1

  • 0

  • 1

  • 2


B.

0

a0 = 0πsin2xsin2xdx = 120πtanxdx = 12logsecx0π = 0a1 =  0πsin22xsin2xdx =  0πsin2xdx = - cos2x20π = 0a3 =   0πsin24xsin2xdx =   0π2sin4x . cos2xdx    = 0πsin6x + sin2xdx    = - cos6x6 + cos2x20π = 0

an - 1 - an - 4 = 0 - 0 = 0


Advertisement
Advertisement