What is the value of sin34°cos236° - sin56°sin124°cos28°cos88° + cos178°sin208° = ?
- 2
- 1
2
1
A.
We have,sin34°cos236° - sin56°sin124°cos28°cos88° + cos178°sin208°= sin34°cos180° + 56° - sin90° - 34°sin180° - 56°cos28°cos90° - 2° + cos180° - 2°sin180° + 28°= sin34° - cos56° - cos34°sin56°cos28°sin2° + - cos2°sin28°= - sin34°cos56° - cos34°sin56°cos28°sin2° + cos2°sin28°= - sin34° + 56°sin28° + 2°= - sin90°sin30° = - 112 = - 2
tan54° can be expressed as
sin9° + cos9°sin9° - cos9°
sin9° - cos9°sin9° + cos9°
cos9° + sin9°cos9° - sin9°
sin36°cos36°
If p = Xcosθ - Ysinθ, q = Xsinθ + Ycosθ and p2 + 4pq + q2 = AX2 + BY2, 0 ≤ θ ≤ π2. What is the value of θ ?
π2
π3
π4
π6
If p = Xcosθ - Ysinθ, q = Xsinθ + Ycosθ and p2 + 4pq + q2 = AX2 + BY2, 0 ≤ θ ≤ π2
What is the value of A ?
4
3
-1
0
It is given that cosθ - α = a, cosθ - β = bWhat is cosα - β = ?
ab + 1 - a21 - b2
ab - 1 - a21 - b2
a1 - b2 - b1 - a2
a1 - b2 + b1 - a2
It is given that cosθ - α = a, cosθ - β = b. What is sin2α - β + 2abcosα - β = ?
a2 + b2
a2 - b2
b2 - a2
- (a2 + b2)
If sinα + cosα = p, then what is cos22α = ?
p2
p2 - 1
p22 - p2
p2 + 1
If tanθ = 12 and tanφ = 13, then what is the value of θ + ϕ
If cosA = 34, then what is the value of sinA2sin3A2 = ?
58
516
524
732