The angular amplitude of a simple pendulum is θ0. The

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

161.

The angular amplitude of a simple pendulum is θ0. The maximum tension in its string will be

  • mg (1 - θ0)

  • mg (1 + θ0 )

  • mg 1- θ02

  • mg 1 + θ02


D.

mg 1 + θ02

The simple pendulum at angular amplitude θo is shown in the figure

         Tmaxmg + mv2l            ....(i)

When bob of pendulum comes from A to B, it covers a vertical distance h.

   

∴       cosθ0 = l - hl

⇒        h = l ( l - cos θ )                 .....(ii) 

Also during A to B, potential energy of bob converts into kinetic energy

∴        mgh = 12mv2

∴            v = 2 g h                   ....... (iii)

Thus, using Eqs. (i), (ii) and (iii) we obtain

    Tmax = mg + 2mgl l  1 - cosθo 

            = mg + 2mg 1 - 1 + θ022

                          (By using binomial theorem)

            = mg 1 + θ02


Advertisement
162.

A particle is subjected to two simple harmonic motions along X-axis while other is along a line making angle 45° with the X-axis. The two motions are given by   x = x0 sin ωt  and  s =s0 sin ωt. The amplitude of resultant motion is 

  • x0 + s0 + 2x0s0

  • x02 + s02

  • x02 - s02 + 2x0 s0

  • x02 + s02 + 2 x0 s012


163.

A pan with a set of weights is attached to a light spring. The period of vertical oscillation is 0.5s. When some additional weights are put in pan, then the period of oscillations increases by 0.1 s. The extension caused by the additional weight is

  • 5.5 cm

  • 3.8 cm

  • 2.7 cm

  • 1.3 cm


164.

A particle is describing simple harmonic motion. If its velocities are v1 and v2 when the displacements from the mean position are y1 and y2 respectively, then its time period is

  • 2π y12 + y22v12 + v22

  • 2π v22 - v12y12 - y22

  • 2π v12 + v22y12 + y22

  • 2π y12  - y22v22 - v12


Advertisement
165.

Assertion:  A particle in x-y plane is related by   x = α sin t and  y =  α (l - cos t), where α and ω are constants, then the particle will have parabolic motion.

Reason:  A particle under the influence of two perpendicular velocities has parabolic motion.

  • If both assertion and reason are true and reason is the correct explanation of assertion.

  • If both assertion and reason are true but reason is not the correct explanation of assertion.

  • If assertion is true but reason is false.

  • If both assertion and reason are false.


166.

A body of mass 60 kg is suspended by means of three strings P Q and R as shown in the figure is in equilibrium. The tension in the string P is

  

  • 130.9 g N

  • 60 g N

  • 50 g N

  • 103.9 g N


167.

The angular amplitude of simple pendulum is θo. The maximum tension in its string will be

  • mg ( 1 - θ0 )

  • mg ( 1 + cosθ0)

  • mg ( 1 - cos)

  • mg ( 1 + cos)


168.

The displacement of a particle executing SHM is given by y = 0.25 sin200t cm. The maximum speed of the particle is

  • 200 cm s-1

  • 100 cm s-1

  • 50 cm s-1

  • 5.25 cm s-1


Advertisement
169.

A mass M is suspended from a spring of negligible mass. The spring is pulled a little and then released so that the mass executes simple harmonic oscillations with a time period T. If the mass is increased by m, then the time period becomes 54 T. The ratio of mM is

  • 9/16

  • 5/4

  • 25/16

  • 4/5


170.

A wave is represented by the equation y= 0.5 sin(10t - x) metre It is a travelling wave propagating along +x direction with velocity

  • 10 m s-1

  • 20 m s-1

  • 5 m s-1

  • None of these


Advertisement