If and then the value of x2 + 4y2 is
1
2
3
4
D.
4
2y cosθ = x sin θ ....(i) {Given}
⟹ x sec θ = 2y cosec θ = 0 ...(ii)
And,
2x sec θ - y cosec θ = 3
2 x 2y cosec θ - y cosec θ = 3 [using (ii)]
3y cosec θ = 3
y = sin θ ...(iii)
Put the value of y = sin θ in equation (i)
2 x sin θ x cos θ = x sin θ
x = 2 cos θ ...(iv)
Now,
x2 + 4y2 = (2 cosθ)2 + (4 sinθ)2 [Using (iii) & (iv)]
= 4(cos2θ + sin2θ)
= 4
If x sin3θ + y cos3θ = sin θ cos θ ≠ 0
and x sin θ - y cos θ = 0, then the value of (x2 + y2) is
sin θ - cos θ
sin θ + cos θ
0
1