If x + y = 1 + xy, then x3 + y3 - x3y3 is equal to
0
1
-1
-1
B.
1
Put the value of x and y = 1
as it satisfies the equation
x + y = 1 + xy
1 + 1 = 1+ 1.1
2 = 2
∴ x3 + y3 - x3y3 = (1)3 + (1)3 - (1)3(1)3 = 2 - 1 = 1
If x = 222, y = 223, z = 225, then the value of x3 + y3 + z3 - 3xyz
4590
4690
4950
4950