Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

141.

The general solution of the differential equation xdy - ydx = y2dx is

  • y = xC - x

  • x = 2yC + x

  • y = C + x2x

  • y = 2xC + x


142.

The order of the differential equation d3ydx32 + d2ydx22 + dydx5 = 0 is

  • 3

  • 4

  • 1

  • 5


143.

The solution of dy/dx + ytan(x) = sec(x), y(0) = 0 is

  • ysec(x) = tan(x)

  • ytan(x) = sec(x)

  • tan(x) = ytan(x)

  • xsec(x) = tan(y)


144.

The differential equation for, which y = a cos(x) + b sin(x) is a solution, is :

  • d2ydx2 + y = 0

  • d2ydx2 - y = 0

  • d2ydx2 + a + by = 0

  • d2ydx2 = a + by


Advertisement
145.

The solution of dydx + Pxy = 0 is

  • y = cePdx

  • y = ce- Pdx

  • x = ce- Pdy

  • x = cePdy


146.

The differential equation of the family of lines passing through the origin is :

  • xdydx + y = 0

  • x + dydx = 0

  • dydx = y

  • xdydx - y = 0


147.

The solution of dydx + y = e- x; y(0) = 0 is :

  • y = e- x(x - 1)

  • y = xe- x

  • y = xe- x + 1

  • y = (x + 1)e-x


148.

The degree of the differential equation d2ydx2 + dydx3 + 6y = 0 is :

  • 1

  • 3

  • 2

  • 5


Advertisement
149.

The solution of the equation (2y - 1)dx - (2x + 3)dy = 0 is  :

  • 2x - 12y + 3 = c

  • 2x + 32y - 1 = c

  • 2x - 12y - 1 = c

  • 2y + 12x - 3 = c


Advertisement

150.

Let F denotes the family of ellipses whose centre is at the origin and major axis is the y-axis. Then, equation of the family F is :

  • d2ydx2 + dydxxdydx - y = 0

  • xyd2ydx2 + dydxxdydx - y = 0

  • xyd2ydx2 + dydxxdydx - y = 0

  • d2ydx2 - dydxxdydx - y = 0


C.

xyd2ydx2 + dydxxdydx - y = 0

Equation of family of ellipse is x2a2 + y2b2 = 1On differentiating w.r.t. x, we get 2xa2 + 2yb2dydx = 0       ...i  xa2 + yb2dydx = 0      ...iiAgain differentiating w.r.t. x, we get        1a2 + yb2d2ydx2 + dydx = 0 - yxdydx + yd2ydx2 + dydx2 = 0  from (ii)     xyd2ydx2 + dydxxdydx - y = 0


Advertisement
Advertisement