50 વસ્તુઓનું 10, 10, 10, 15 અને 5 વસ્તુઓના જૂથમાં વિભાજન કેટલી રીતે કરી શકાય ?  from Mathematics ક્રમચય અને સંચય

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : ક્રમચય અને સંચય

Multiple Choice Questions

81. 5 ભિન્ન વસ્તુઓને 3 વ્યક્તિઓની વચ્ચે કેટલી રીતે વહેંચી શકાય કે જેથે દરેકને ઓછામાં ઓછી એક વસ્તુ મળે ? 
  • 150
  • 300
  • 25
  • 120

82. 30 ! એ ...... સંખ્યા વડે વિભાજ્ય છે.
  • 457
  • 458
  • 9 × 1517
  • 37 × 157

83. અંગેજી મૂળાક્ષરોના 10 ભિન્ન અક્ષરો આપેલ છે. આ અક્ષરોમાંથી 5 અક્ષરોના શબ્દ બનાવવામાં આવે છે, તો ઓછામાં ઓછા એક અક્ષરનું પુનરાવર્તન થતું હોય તેવા શબ્દોની સંખ્યા ...... છે.
  • 99748
  • 30240
  • 69760
  • આપેલ પૈકી એક પણ નહી 

Advertisement
84. 50 વસ્તુઓનું 10, 10, 10, 15 અને 5 વસ્તુઓના જૂથમાં વિભાજન કેટલી રીતે કરી શકાય ? 
  • fraction numerator bold 50 bold space bold factorial over denominator bold left parenthesis bold 10 bold space bold factorial bold right parenthesis to the power of bold 3 bold space bold left parenthesis bold 15 bold space bold factorial bold right parenthesis bold space bold left parenthesis bold 3 bold space bold factorial bold right parenthesis end fraction
  • fraction numerator bold 50 bold space bold factorial bold space bold cross times bold 5 bold space over denominator bold left parenthesis bold 10 bold space bold factorial bold right parenthesis to the power of bold 3 bold space bold left parenthesis bold 15 bold space bold factorial bold right parenthesis bold space bold left parenthesis bold space bold 5 bold factorial bold right parenthesis bold space bold left parenthesis bold 3 bold space bold factorial bold right parenthesis end fraction
  • fraction numerator bold 50 bold space bold factorial over denominator bold left parenthesis bold 10 bold space bold factorial bold right parenthesis to the power of bold 3 bold space bold left parenthesis bold 15 bold space bold factorial bold right parenthesis bold space bold left parenthesis bold 5 bold space bold factorial bold right parenthesis bold space bold left parenthesis bold 5 bold space bold factorial bold right parenthesis end fraction
  • fraction numerator bold 50 bold space bold factorial over denominator bold left parenthesis bold 10 bold space bold factorial bold right parenthesis to the power of bold 3 bold space bold left parenthesis bold 15 bold space bold factorial bold right parenthesis bold space bold left parenthesis bold 5 bold space bold factorial bold right parenthesis bold space bold left parenthesis bold 3 bold space bold factorial bold right parenthesis bold space end fraction

D.

fraction numerator bold 50 bold space bold factorial over denominator bold left parenthesis bold 10 bold space bold factorial bold right parenthesis to the power of bold 3 bold space bold left parenthesis bold 15 bold space bold factorial bold right parenthesis bold space bold left parenthesis bold 5 bold space bold factorial bold right parenthesis bold space bold left parenthesis bold 3 bold space bold factorial bold right parenthesis bold space end fraction

Advertisement
Advertisement
85. અંકો 0, 1, 2, 3, 5 અને 7 વડે ચાર અંકોની ........ અયુગ્મ સંખ્યાઓ બને.
  • 400
  • 375
  • 216
  • 720

86. શબ્દ ENDEANOEL ના અક્ષરોના કેટલા ક્રમચયો શબ્દ ENDEA ને સમાવે છે ?
  • 2 × 5 !
  • 7 × 5 !
  • 5 !
  • 21 × 5 !

87. અંકો 0, 1, 2, 3 અને 4 ની મદદથી 1000 કરતાં મોટી પરંતુ 4000 કરતાં મોટી ન હોય તેવી કુલ કેટલી સંખ્યાઓ બનાવી શકાય ? (પુનરાવર્તન સાથે )
  • 375
  • 350
  • 450
  • 576

88.
જુદા જુદા રંગના ચાર દડા અને તે જ રંગની ચાર પેટીઓ છે. દરેક પેટીમાં એક દડો આવે તે ચાર દડાઓ પેટીમાં કેટલી રીતે મૂકી શકાય કે જેથી કોઈ દડો તે જ રંગની પેટીમાં ન આવે ?
  • 9
  • 12
  • 6
  • 3

Advertisement
89.
COCHIN શબ્દના અક્ષરોના ક્રમચયો બનાવવામાં આવે છે અને વધા જ ક્રમચયોને અંગેજી ડીક્શનરી પ્રમાણે ક્રમમાં ગોઠવવામાં આવે છે. COCHIN શબ્દની પહેલાં શબ્દોની સંખ્યા ......... છે.
  • 360
  • 96
  • 192
  • 48

90.
જો nCr એ n વસ્તુઓમાંથી r વસ્તુઓના સંચયની સંખ્યા દર્શાવતો nC(r+1)nC(r-1) + 2 × nCr = ........   
  • (n+1)C(r+1)
  • (n+2)C(r+1)
  • (n+2)Cr
  • આપેલ પૈકી એક પણ નહી

Advertisement

Switch