91.સમતલમાં આવેલાં 10 બિંદુઓ પૈકી 6 બિંદુઓ સમરેખ છે. જો આ બધાં બિંદુઓની મદદથી ત્રિકોણ બને, તો .......
N > 190
N ≤ 100
100 < N ≤ 140
140 < N ≤ 190
92.
એક વિદ્યાર્થી પ્રથમ પાંચ પ્રશ્નોમાંથી ઓછામાં ઓછા ચાર પ્રશ્નોના જવાબ આપવાના હોય તે રીતે 13 પ્રશ્નોમાંથી 10 પ્રશ્નોના જવાબ કેટલી રીતે આપી શકે ?
280
346
196
140
Advertisement
93.MISSISSIPPI શબ્દના અક્ષરોની ફેરબદલી કરીને કેટલા શબ્દો બનાવી શકાય કે જેથી S બે પાસપાસે ન આવે ?
A.
Tips: -
ચાર S સિવાયના અક્ષરો M, I, I, I, I, P, P ને હારમાં ગોઠવવાના કુલ પ્રકારની સંખ્યા
ચારS આઠ સ્થાનમાં ગોઠવવાના કુલ પ્રકાર = 8C4
∴ માંગેલ શબ્દોની સંખ્યા = 7 × 5 × 3 × 8C4 1
Advertisement
94.
દડાઓના રંગ સિવાય દડાઓ સમાન છે. તેમ ધારી, 10 સફેદ, 9 લીલા અને 7 કાળા રંગના દડામાંથી એક કે વધુ દડા કરેલી રીતે પસંદ કરી શકાય ?
880
879
630
629
Advertisement
95.વિધેય f(x) = (7-x)P(x-3) નો વિસ્તાર ...... છે.
{1, 2, 3, 4, 5}
{1, 2, 3, 4, 5, 6}
{1, 2, 3}
{1, 2, 3, 4}
96.
6 ભિન્ન નવલકથાઓ અને 3 ભિન્ન શબ્દકોશોમાંથી 4 નવલકથાઓ અને 1 શબ્દકોશ પસંદ કરીને છાજલી પર ગોઠવવામાં આવે છે. શબ્દકોશ હંમેશાં મધ્યમાં જ રહે તેવી ગોઠવણીના પ્રકારની સંખ્યા ........ છે.
ઓછામાં ઓછા 1000
500 થી ઓછા
ઓછામાં ઓછા 500 અને 750 થી ઓછા
ઓછામાં ઓછા 750 પરંતુ 1000 થી ઓછા
97.
એક ચૂંટણીમાં મતદાન વધુમાં વધુ જેટલા ઉમેદવાર ચૂંટવાના છે તેટલા મત આપી શકે છે. ચૂંટણીમાં 10 ઉમેદવારમાંથી 4 ઉમેદવાર ચૂંટવાના છે. જો મતદારને ઓછામાં ઓછો એક મત આપવાનો હોય, તો તે મતદાન કેટલી રીતે કરી શકે ?
385
5040
1110
6210
98.8 સમાન દડાને ત્રણ ભિન્ન ખોખામાં કેટલી રીતે મૂકી શકાય કે જેથી એક પણ ખોખું ખાલી ન રહે ?
8C3
38
5
21
Advertisement
99.
જો p અને q નો લ.સા.અ. r2 t4 s2 હોય, જ્યાં r, s, t અવિભાજ્ય પૂર્ણાંક સંખ્યાઓ છે. p અને q ધન પૂર્ણાંક છે, તો આવી ક્રમયુક્ત જોડ (p, q) ની સંખ્યા ........ છે.
252
254
224
225
100.ગણ S = {1, 2, 3, ... 12} ને સમાન સભ્યોની સંખ્યાવાળા ઉપગણ A, B, C માં વિભાજન કરવામાં આવે કે જેથી A ∪ B ∪ C = S, A ∩ B = B ∩ C = A ∩ C = તો આ કેટલા પ્રકારે શક્ય છે ?