વિધેય f(x) = (7-x)P(x-3) નો વિસ્તાર ...... છે. from Mathematics ક્રમચય અને સંચય

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : ક્રમચય અને સંચય

Multiple Choice Questions

Advertisement
91. વિધેય f(x) = (7-x)P(x-3) નો વિસ્તાર ...... છે.
  • {1, 2, 3, 4, 5}
  • {1, 2, 3, 4, 5, 6}
  • {1, 2, 3}
  • {1, 2, 3, 4}

C.

{1, 2, 3}

Tips: -

અહીં x - 3 ≥ 0 અને 7 - x ≥ x - 3 

∴ x ≥ 3 અને 10 ≥ 2x
 

∴ 3 ≤ x અને x ≤ 5 
 

∴ 3 ≤ x ≤ 5 

∴ x = 3, 4,  અથવા 5

∴ f(3) = 4P0 = 1 
તથા f(4) = 3P1 = 3  તથા f(5) = 2P2 = 2 ! = 2 
 

∴ f નો વિસ્તાર = {1 , 2 , 3}


Advertisement
92.
દડાઓના રંગ સિવાય દડાઓ સમાન છે. તેમ ધારી, 10 સફેદ, 9 લીલા અને 7 કાળા રંગના દડામાંથી એક કે વધુ દડા કરેલી રીતે પસંદ કરી શકાય ? 
  • 880
  • 879
  • 630
  • 629

93. ગણ S = {1, 2, 3, ... 12} ને સમાન સભ્યોની સંખ્યાવાળા ઉપગણ A, B, C માં વિભાજન કરવામાં આવે કે જેથી A ∪ B ∪ C = S, A ∩ B = B ∩ C = A ∩ C = up diagonal strike bold 0 તો આ કેટલા પ્રકારે શક્ય છે ? 
  • fraction numerator bold 12 bold space bold factorial over denominator bold left parenthesis bold 4 bold factorial bold right parenthesis to the power of bold 4 end fraction
  • fraction numerator bold 12 bold space bold factorial over denominator bold left parenthesis bold 4 bold factorial bold right parenthesis cubed end fraction
  • fraction numerator bold 12 bold space bold factorial over denominator bold 3 bold space bold left parenthesis bold 4 bold factorial bold right parenthesis to the power of bold 4 end fraction
  • fraction numerator bold 12 bold space bold factorial over denominator bold 3 bold space bold left parenthesis bold 4 bold factorial bold right parenthesis cubed end fraction

94. MISSISSIPPI શબ્દના અક્ષરોની ફેરબદલી કરીને કેટલા શબ્દો બનાવી શકાય કે જેથી S બે પાસપાસે ન આવે ?
  • bold 7 bold space bold times bold space bold C presuperscript bold 6 subscript bold 4 bold space bold times bold C presuperscript bold 8 subscript bold 4
  • bold 6 bold space bold times bold space bold 8 bold space bold times bold space bold C presuperscript bold 7 subscript bold 4
  • bold 6 bold space bold times bold space bold 7 bold space bold times bold space bold C presuperscript bold 8 subscript bold 4
  • bold 8 bold space bold times bold space bold C presuperscript 6 subscript bold 4 bold space bold times bold space bold C presuperscript bold 7 subscript bold 4

Advertisement
95. સમતલમાં આવેલાં 10 બિંદુઓ પૈકી 6 બિંદુઓ સમરેખ છે. જો આ બધાં બિંદુઓની મદદથી ત્રિકોણ બને, તો ....... 
  • N > 190
  • N ≤ 100
  • 100 < N ≤ 140
  • 140 < N ≤ 190

96. 8 સમાન દડાને ત્રણ ભિન્ન ખોખામાં કેટલી રીતે મૂકી શકાય કે જેથી એક પણ ખોખું ખાલી ન રહે ?
  • 8C3
  • 38
  • 5
  • 21

97.
જો p અને q નો લ.સા.અ. r2 t4 s2 હોય, જ્યાં r, s, t અવિભાજ્ય પૂર્ણાંક સંખ્યાઓ છે. p અને q ધન પૂર્ણાંક છે, તો આવી ક્રમયુક્ત જોડ (p, q) ની સંખ્યા ........ છે. 
  • 252
  • 254
  • 224
  • 225

98.
એક ચૂંટણીમાં મતદાન વધુમાં વધુ જેટલા ઉમેદવાર ચૂંટવાના છે તેટલા મત આપી શકે છે. ચૂંટણીમાં 10 ઉમેદવારમાંથી 4 ઉમેદવાર ચૂંટવાના છે. જો મતદારને ઓછામાં ઓછો એક મત આપવાનો હોય, તો તે મતદાન કેટલી રીતે કરી શકે ?
  • 385
  • 5040
  • 1110
  • 6210

Advertisement
99.
6 ભિન્ન નવલકથાઓ અને 3 ભિન્ન શબ્દકોશોમાંથી 4 નવલકથાઓ અને 1 શબ્દકોશ પસંદ કરીને છાજલી પર ગોઠવવામાં આવે છે. શબ્દકોશ હંમેશાં મધ્યમાં જ રહે તેવી ગોઠવણીના પ્રકારની સંખ્યા ........ છે.
  • ઓછામાં ઓછા 1000

  • 500 થી ઓછા 
  • ઓછામાં ઓછા 500 અને 750 થી ઓછા 
  • ઓછામાં ઓછા 750 પરંતુ 1000 થી ઓછા 

100.
એક વિદ્યાર્થી પ્રથમ પાંચ પ્રશ્નોમાંથી ઓછામાં ઓછા ચાર પ્રશ્નોના જવાબ આપવાના હોય તે રીતે 13 પ્રશ્નોમાંથી 10 પ્રશ્નોના જવાબ કેટલી રીતે આપી શકે ?
  • 280
  • 346
  • 196
  • 140

Advertisement

Switch