f:R-[-1, ∞] પર f(x) = (x + 1)2-1 દ્વારા વ્યાખ્યાયિત વિધેય માટે જો S = {x| f(x) = f-1(x)} હોત, તો x = .......... મળે. from Mathematics ગણ, સંબંધ અને વિધેય

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : ગણ, સંબંધ અને વિધેય

Multiple Choice Questions

31.
bold f bold space bold colon bold space bold R bold space bold rightwards arrow bold space bold left curly bracket bold y bold space bold vertical line bold space bold vertical line bold y bold vertical line bold less than bold 1 bold comma bold space bold y bold element of bold R bold right curly bracket bold comma bold space bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space fraction numerator bold 10 to the power of bold x bold minus bold 10 to the power of bold minus bold x end exponent over denominator bold 10 to the power of bold x bold space bold plus bold space bold 10 to the power of bold minus bold x end exponent end fraction હોય, તો f-1(x) = .........  (સ્વીકારી લો કે f-1 નું અસ્તિત્વ છે.)
  • 1 half space log subscript 10 space open parentheses fraction numerator 1 plus straight x over denominator 1 minus straight x end fraction close parentheses
  • 1 fourth space log subscript 10 space open parentheses fraction numerator 2 x over denominator 2 minus x end fraction close parentheses
  • 1 half space log subscript 10 space left parenthesis 2 x minus 1 right parenthesis
  • log subscript 10 space left parenthesis 2 minus straight x right parenthesis

32. વિધેય f(x) = log4 [log5 {log3, (18x - x2 - 77}] નો મહત્તમ પ્રદેશ ........ મળે.
  • (8, 10)

  • (0, 10)

  • (10, 12)

  • (4, 5)


33.
બહુપદી વિધેય f(x) = xn + 1 એ f(x) f open parentheses bold 1 over bold x close parentheses bold space bold equals bold space bold f bold left parenthesis bold x bold right parenthesis bold space bold plus bold space bold f open parentheses bold 1 over bold x close parentheses શરત સંતોષે છે. જો f(12) = 1729 હોય, તો f(15) = ............ .x ∈ R
  • 3357

  • 3376

  • 2075

  • 1001


34. જો d: R →R, f(x) = sin x અને g : (1, ∞) →R, g(x) = square root of bold x to the power of bold 2 bold space bold minus bold space bold 1 end root હોય, તો (gof) (x) = ...... 
  • cos space x
  • sin space square root of x squared space minus space 1 end root
  • square root of sin space left parenthesis straight x squared space minus space 1 right parenthesis end root
  • અવ્યાખ્યાયિત


Advertisement
35.
જો f: R - {-3} →R - {1} પર વ્યાખ્યાયિત વિધેય, f(x) = fraction numerator bold x bold plus bold 2 over denominator bold x bold plus bold 3 end fraction નું પ્રતિવિધેય અસ્તિત્વ ધરાવતો x ∈ ........... માટે, f-1(x) > 0 મળે.
  • open parentheses 2 over 3 comma space 1 close parentheses
  • open parentheses negative infinity comma 2 over 3 close parentheses
  • left parenthesis 1 comma space infinity right parenthesis
  • શક્ય નથી.


Advertisement
36.
f:R-[-1, ∞] પર f(x) = (x + 1)2-1 દ્વારા વ્યાખ્યાયિત વિધેય માટે જો S = {x| f(x) = f-1(x)} હોત, તો x = .......... મળે.
  • {0, 1, -1}

  • {0, -1}

  • up diagonal strike 0
  • open curly brackets 0 comma space 1 comma space fraction numerator negative square root of 3 plus square root of 31 over denominator 2 end fraction comma space fraction numerator negative square root of 3 minus square root of 31 over denominator 2 end fraction close curly brackets

B.

{0, -1}

Tips: -

x1, x2 ∈ R માટે, જો f(x1) = f(x2) લઈએ, તો

(x1 + 1)2 = (x2 + 1)2-1   (જ્યાં x1, x2 ≥ -1 )

∴ (x1 + 1)2 = (x2 + 1)2

∴ x1 + 1 = x2 + 1 અથવા x1 + 1 = -x2 - 1 
 

∴ x1 = x2 અથવા x1 + x2 = -2  પરંતુ x1x2 ≥ - 1  હોવાથી x1 + x2 = -2  થવા માટે, x1 = x2 = -1 મળે.

આમ, f(x1) = f(x2) ⇒ x1 = x2 હોવાથી, f એક-એક વિધેય છે.

હવે,  y, y ≥ -1, f(x) = (x+1)2 - 1 = y લેતાં,

(x+1)
2 = y + 1


∴ x + 1 = square root of bold y bold space bold plus bold 1 end root                            (x ≥-1)

∴ x = -1 + square root of bold y bold plus bold 1 end root  મળે.                             ... (1)
 

∴ f(x) = f(-1 + square root of bold left parenthesis bold y bold plus bold 1 bold right parenthesis end root bold space bold equals bold space bold left square bracket bold minus bold 1 bold space bold plus bold space square root of bold left parenthesis bold y bold plus bold 1 bold right parenthesis end root bold space bold 1 bold right square bracket to the power of bold 2 bold space bold minus bold space bold 1 bold space bold equals bold space bold italic y bold space

આમ, f વ્યાપ્ત વિધેય હોવાથી, f-1(x) અસ્તિત્વ ધરાવે.

હવે, f(x) = f-1(x) હોવાથી,

(x+1)2 -1 = -1 + square root of bold x bold plus bold 1 end root                   (f(x) = y ⇒ x = f-1(y))

∴ (x+1)2 =  square root of bold x bold plus bold 1 end root

∴ (x+1)2 =  square root of bold x bold plus bold 1 end root = 0

∴ square root of bold x bold plus bold 1 end root bold space open square brackets bold left parenthesis bold x bold plus bold 1 bold right parenthesis to the power of begin inline style bold 3 over bold 2 end style end exponent bold minus bold 2 close square brackets bold space bold equals bold space bold 0
∴ square root of bold x bold plus bold 1 end root bold space bold equals bold space bold 0 
અથવા  bold left parenthesis bold x bold plus bold 1 bold right parenthesis to the power of begin inline style bold 3 over bold 2 end style end exponent bold space bold equals bold space bold 1 bold space

∴ x + 1 = 0  અથવા (x + 1)3 = 1 ⇒ x = 0 
 

આમ x = 0 , અથવા - 1  મળે.

S { x | f(x) = f-1(x)} હોય, તો S = {0, -1}  મળે.


Advertisement
37. વિધેય f(x) = 9x - 3x + 1 નો વિસ્તાર ......... હોય.
  • (0, ∞)

  • (-∞, 0)

  • (-∞, ∞)

  • open square brackets 3 over 4 comma space infinity close square brackets

38. જો f(x) = sin2 x + sin2 open parentheses bold x bold plus bold pi over bold 3 close parentheses bold space bold plus bold space bold italic c bold italic o bold italic s bold space bold italic x bold space bold. bold space bold italic c bold italic o bold italic s bold space open parentheses bold x bold plus bold pi over bold 3 close parentheses bold space તથા g bold 5 over bold 4 = 1 હોય તો (gof) (x) = ............ . 
  • 1

  • 4 over 5
  • 5 over 4
  • અવ્યાખ્યાયિત


Advertisement
39.
વિધેય f : A → R, f(x) = bold log subscript begin inline style fraction numerator bold x bold minus bold 2 over denominator bold x bold plus bold 3 end fraction end style end subscript bold 2 તથા g : B → R, g(x) = fraction numerator bold 1 over denominator square root of bold x to the power of bold 2 bold space bold minus bold 9 end root end fraction હોય, તો x ની કઈ કિંમતો માટે વિધેય bold f over bold g અસ્તિત્વ ધરાવે ?
  • (-3, 2)

  • (-∞, -3) ∪ (3, ∞) 

  • [2,3]

  • [-3, -2]


40. {-2, 2} → {1, 3} પર એક-એક સંગતતા ધરાવતા બે ભિન્ન વિધેયો નીચેનામાંથી કયા હોઈ શકે ? straight x over 2 plus 2
  • y = ±

  • y = ±x + 4

  • y = x ± 2

  • y = ± x ± 2


Advertisement

Switch