f : [1, ∞] → [1, ∞) f(x) = 2x(x-1) હોય, તો f-1(x) = ........  from Mathematics ગણ, સંબંધ અને વિધેય

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : ગણ, સંબંધ અને વિધેય

Multiple Choice Questions

41. f: N→Z,  દ્વારા, વ્યાખ્યાયિત વિધેય bold f bold left parenthesis bold n bold right parenthesis bold space bold equals bold space open curly brackets table attributes columnalign left end attributes row cell fraction numerator bold n bold minus bold 1 over denominator bold 2 end fraction end cell row cell fraction numerator bold minus bold n over denominator bold 2 end fraction end cell end table close
  • એક-એક નથી તથા વ્યાપ્ત વિધેય પણ નથી.

  • એક-એક વિધેય છે પરંતુ વ્યાપ્ત વિધેય નથી. 

  • વ્યાપ્ત વિધેય છે પરંતુ એક-એક વિધેય નથી. 

  • એક-એક તથા વ્યાપ્ત વિધેય છે.


42. bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space fraction numerator bold x to the power of bold 2 bold space bold plus bold space bold x bold space bold plus bold space bold 2 over denominator bold x to the power of bold 2 bold space bold plus bold space bold x bold space bold plus bold space bold 1 end fraction bold comma bold space bold x bold space bold element of bold space bold R નો વિસ્તાર ....... હોય. 
  • (1, ∞)

  • left parenthesis 1 comma 7 over 3 right square bracket
  • left parenthesis 1 comma 7 over 5 right square bracket
  • left parenthesis 1 comma space 1 over 7 right parenthesis

43. જો  S = {(1, 3), (4, 2), (2, 3), (3, 1)} એ ગણ A = {1, 2, 3, 4} પરનો સંબંધ દર્શાવે તો S એ ......... 
  • સંમિત સંબંધ નથી

  • સ્વવાચક સંબંધ છે. 

  • પરંપરિત સંબંધ છે. 

  • કોઈ સંબંધ નથી.


44. જો g (f(x) = |sin x| તથા f(g(x) = (sin square root of bold x)2 હોય, તો ......
  • straight f left parenthesis straight x right parenthesis space equals space sin squared straight x comma space straight g left parenthesis straight x right parenthesis space equals space square root of straight x
  • straight f left parenthesis straight x right parenthesis space equals space sin space straight x comma space straight g left parenthesis straight x right parenthesis space equals space vertical line straight x vertical line
  • bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space bold x to the power of bold 2 bold comma bold space bold g bold left parenthesis bold x bold right parenthesis bold space bold equals bold space bold sin bold space square root of bold x
  • f અને g નિશ્વિત ન કરી શકાય. 


Advertisement
45. વિધેય f(x) = log open parentheses bold x bold plus square root of bold x to the power of bold 2 bold space bold plus bold space bold 1 end root close parentheses એ .........
  • અયુગ્મ વિધેય છે.

  • યુગ્મ કે અયુગ્મ વિધેય નથી. 

  • યુગ્મ વિધેય છે. 

  • આવર્તી વિધેય છે.


46. bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space fraction numerator bold sin to the power of bold minus bold 1 end exponent bold left parenthesis bold x bold minus bold 3 bold right parenthesis over denominator square root of bold 9 bold minus bold x to the power of bold 2 end root end fraction નો મહત્તમ પ્રદેશ ....... હોય.
  • [3, 2]

  • [2, 1]

  • [2, 3)

  • [1, 2]


Advertisement
47. f : [1, ∞] → [1, ∞) f(x) = 2x(x-1) હોય, તો f-1(x) = ........ 
  • 1 +square root of 4 space log subscript 2 space straight x end root

  • 1 half plus 1 half square root of 1 plus 4 log subscript 2 x end root
  • square root of 1 plus 4 log subscript 2 straight g end root
  • અસ્તિત્વ ધરાવતું નથી


B.

1 half plus 1 half square root of 1 plus 4 log subscript 2 x end root

Tips: -

અહીં f(x) = 2x(x-1) = bold 2 to the power of bold x to the power of bold 2 bold minus bold x end exponent નું x પ્રત્યેક વિકલન કરતાં,
bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space bold 2 to the power of bold x to the power of bold 2 bold minus bold x end exponent bold space bold log subscript bold e bold space bold 2 bold space bold left parenthesis bold 2 bold x bold space bold minus bold space bold 1 bold right parenthesis

વળી, loge 2 > 0 તથા x ≥ 1  હોવાથી, (x-1) ≥ 0 હોય જ. આથી 2x(x-1) loge 2 > 0 મળે.

હવે, x ≥ 1 હોવાથી, 2x ≥ 2

∴ 2x - 1 ≥ 1 > 0 મળે. 

ટુંકમાં, f'(x) = 2x(x-1) loge 2 (2x-1) > 0
 

∴ f એક-એક અને વ્યાપ્ત વિધેય છે.

∴ f-1 (x) અસ્તિત્વ ધરાવે.

હવે,  x, x ∈ [1, ∞), f(x) = y ⇒ x = f-1 (y) પરથી,

bold 2 to the power of bold x to the power of bold 2 bold minus bold x end exponent bold space bold equals bold space bold y bold space bold greater than bold space bold 1  આથી, (x2 -x) = log2y

bold therefore bold space bold space bold x to the power of bold 2 bold space bold minus bold x bold space bold plus bold space bold 1 over bold 4 bold space bold equals bold space bold 1 over bold 4 bold space bold plus bold space bold log subscript bold x bold space bold y

bold therefore open parentheses bold x bold minus bold 1 over bold 2 close parentheses to the power of bold 2 bold space bold equals bold space bold 1 over bold 4 bold space bold plus bold space bold log subscript bold 2 bold y bold space bold equals bold space fraction numerator bold 1 bold plus bold 4 bold log subscript bold 2 bold y over denominator bold 4 end fraction

bold therefore bold space bold x bold space bold minus bold space bold 1 over bold 2 bold space bold equals bold space bold 1 over bold 2 bold space square root of bold 1 bold plus bold 4 bold log subscript bold 2 bold y end root bold space bold times bold આથ ી bold space bold x bold space bold equals bold 1 over bold 2 bold space bold plus bold space bold 1 over bold 2 bold space square root of bold 1 bold plus bold 4 bold log subscript bold 2 bold y end root bold space bold equals bold space bold f to the power of bold minus bold 1 end exponent bold left parenthesis bold y bold right parenthesis

bold therefore bold space bold f to the power of bold minus bold 1 end exponent bold space bold left parenthesis bold x bold right parenthesis bold space bold equals bold space bold 1 over bold 2 bold space bold plus bold space bold 1 over bold 2 bold space square root of bold 1 bold plus bold 4 bold log subscript bold 2 bold x end root  



Advertisement
48. sin-1 open square brackets bold log subscript bold 3 open parentheses bold x over bold 3 close parentheses close square brackets નો મહત્તમ પ્રદેશ ............ છે.
  • [1, 9]

  • (1, 9)

  • [9, 1]

  • [-1, 9]


Advertisement
49. f: [0, ∞) → [0, ∞) દ્વારા વ્યાખ્યાયિત વિધેય f(x) = fraction numerator bold x over denominator bold 1 bold plus bold x end fraction હોય, તો f એ ......... .
  • એક-એક તથા વ્યાપ્ત વિધેય છે.

  • એક-એક વિધેય નથી પરંતુ વ્યાપ્ત વિધેય છે. 

  • એક-એક નથી તથા વ્યાપ્ત વિધેય પણ નથી

  • એક-એક વિધેય છે પરંતુ વ્યાપ્ત વિધેય નથી 


50. f(x) sin x + cos x; g(x) = x2-1 હોય, તો g(f(x)) એ x ∈ ....... માટે પ્રતિવિધેય ધરાવે.
  • left square bracket 0 comma space straight pi right square bracket
  • open square brackets negative straight pi over 4 comma straight pi over 4 close square brackets
  • open square brackets negative straight pi over 2 comma pi over 2 close square brackets
  • open square brackets 0 comma pi over 4 close square brackets

Advertisement

Switch