નો વિસ્તાર ....... હોય.  from Mathematics ગણ, સંબંધ અને વિધેય

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : ગણ, સંબંધ અને વિધેય

Multiple Choice Questions

41. sin-1 open square brackets bold log subscript bold 3 open parentheses bold x over bold 3 close parentheses close square brackets નો મહત્તમ પ્રદેશ ............ છે.
  • [1, 9]

  • (1, 9)

  • [9, 1]

  • [-1, 9]


42. જો  S = {(1, 3), (4, 2), (2, 3), (3, 1)} એ ગણ A = {1, 2, 3, 4} પરનો સંબંધ દર્શાવે તો S એ ......... 
  • સંમિત સંબંધ નથી

  • સ્વવાચક સંબંધ છે. 

  • પરંપરિત સંબંધ છે. 

  • કોઈ સંબંધ નથી.


43. f : [1, ∞] → [1, ∞) f(x) = 2x(x-1) હોય, તો f-1(x) = ........ 
  • 1 +square root of 4 space log subscript 2 space straight x end root

  • 1 half plus 1 half square root of 1 plus 4 log subscript 2 x end root
  • square root of 1 plus 4 log subscript 2 straight g end root
  • અસ્તિત્વ ધરાવતું નથી


44. f: N→Z,  દ્વારા, વ્યાખ્યાયિત વિધેય bold f bold left parenthesis bold n bold right parenthesis bold space bold equals bold space open curly brackets table attributes columnalign left end attributes row cell fraction numerator bold n bold minus bold 1 over denominator bold 2 end fraction end cell row cell fraction numerator bold minus bold n over denominator bold 2 end fraction end cell end table close
  • એક-એક નથી તથા વ્યાપ્ત વિધેય પણ નથી.

  • એક-એક વિધેય છે પરંતુ વ્યાપ્ત વિધેય નથી. 

  • વ્યાપ્ત વિધેય છે પરંતુ એક-એક વિધેય નથી. 

  • એક-એક તથા વ્યાપ્ત વિધેય છે.


Advertisement
45. bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space fraction numerator bold sin to the power of bold minus bold 1 end exponent bold left parenthesis bold x bold minus bold 3 bold right parenthesis over denominator square root of bold 9 bold minus bold x to the power of bold 2 end root end fraction નો મહત્તમ પ્રદેશ ....... હોય.
  • [3, 2]

  • [2, 1]

  • [2, 3)

  • [1, 2]


46. વિધેય f(x) = log open parentheses bold x bold plus square root of bold x to the power of bold 2 bold space bold plus bold space bold 1 end root close parentheses એ .........
  • અયુગ્મ વિધેય છે.

  • યુગ્મ કે અયુગ્મ વિધેય નથી. 

  • યુગ્મ વિધેય છે. 

  • આવર્તી વિધેય છે.


Advertisement
47. bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space fraction numerator bold x to the power of bold 2 bold space bold plus bold space bold x bold space bold plus bold space bold 2 over denominator bold x to the power of bold 2 bold space bold plus bold space bold x bold space bold plus bold space bold 1 end fraction bold comma bold space bold x bold space bold element of bold space bold R નો વિસ્તાર ....... હોય. 
  • (1, ∞)

  • left parenthesis 1 comma 7 over 3 right square bracket
  • left parenthesis 1 comma 7 over 5 right square bracket
  • left parenthesis 1 comma space 1 over 7 right parenthesis

B.

left parenthesis 1 comma 7 over 3 right square bracket

Tips: -

bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space fraction numerator bold x to the power of bold 21 bold space bold plus bold space bold x bold space bold plus bold space bold 2 over denominator bold x to the power of bold 2 bold space bold plus bold space bold x bold space bold plus bold space bold 1 end fraction bold space bold equals bold space fraction numerator bold left parenthesis bold x to the power of bold 2 bold space bold plus bold space bold x bold space bold plus bold space bold 1 bold right parenthesis bold space bold plus bold 1 over denominator bold left parenthesis bold x to the power of bold 2 bold space bold plus bold space bold x bold space bold plus bold space bold 1 bold right parenthesis end fraction

                                       bold equals bold space bold 1 bold space bold plus bold space fraction numerator bold 1 over denominator bold x to the power of bold 2 bold space bold plus bold space bold x bold space bold plus bold space bold 1 end fraction

bold equals bold space bold 1 bold space bold plus bold space fraction numerator bold 1 over denominator bold x to the power of bold 2 bold space bold plus bold space bold x bold space bold plus bold space begin display style bold 1 over bold 4 end style bold plus begin display style bold 3 over bold 4 end style end fraction

bold equals bold space bold 1 bold space bold plus bold space fraction numerator bold 1 over denominator open parentheses bold x bold plus bold space begin display style bold 1 over bold 2 end style close parentheses to the power of bold 2 bold space bold plus bold space begin display style bold 3 over bold 4 end style end fraction


હવે f(x) એ open parentheses bold x bold plus bold 1 over bold 2 close parentheses to the power of bold 2 bold space bold plus bold space bold 3 over bold 4 ન્યુનતમ કિંમત ધારણ કરે ત્યારે મહત્તમ બને. આથી, જ્યારે bold x bold plus bold 1 over bold 2 bold space bold equals bold space bold 0

હોય, તો f(x)  મહત્તમ ધારણ કરે. વળી, fraction numerator bold 1 over denominator open parentheses bold x bold plus begin display style bold 1 over bold 2 end style close parentheses to the power of bold 2 bold space bold plus bold space begin display style bold 3 over bold 4 end style end fraction bold space bold not equal to આથી f(x) > 1જ થાય.

bold therefore bold f bold left parenthesis bold x bold right parenthesis bold space bold less than bold space bold 1 bold space bold plus bold space fraction numerator bold 1 over denominator bold 0 bold plus bold 3 over bold 4 end fraction bold space bold equals bold space bold 1 bold plus bold 4 over bold 3 bold space bold equals bold space bold 7 over bold 3

bold therefore bold space bold R subscript bold f bold space bold equals bold space bold left parenthesis bold 1 bold comma bold 7 over bold 3 bold right square bracket


Advertisement
48. f: [0, ∞) → [0, ∞) દ્વારા વ્યાખ્યાયિત વિધેય f(x) = fraction numerator bold x over denominator bold 1 bold plus bold x end fraction હોય, તો f એ ......... .
  • એક-એક તથા વ્યાપ્ત વિધેય છે.

  • એક-એક વિધેય નથી પરંતુ વ્યાપ્ત વિધેય છે. 

  • એક-એક નથી તથા વ્યાપ્ત વિધેય પણ નથી

  • એક-એક વિધેય છે પરંતુ વ્યાપ્ત વિધેય નથી 


Advertisement
49. જો g (f(x) = |sin x| તથા f(g(x) = (sin square root of bold x)2 હોય, તો ......
  • straight f left parenthesis straight x right parenthesis space equals space sin squared straight x comma space straight g left parenthesis straight x right parenthesis space equals space square root of straight x
  • straight f left parenthesis straight x right parenthesis space equals space sin space straight x comma space straight g left parenthesis straight x right parenthesis space equals space vertical line straight x vertical line
  • bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space bold x to the power of bold 2 bold comma bold space bold g bold left parenthesis bold x bold right parenthesis bold space bold equals bold space bold sin bold space square root of bold x
  • f અને g નિશ્વિત ન કરી શકાય. 


50. f(x) sin x + cos x; g(x) = x2-1 હોય, તો g(f(x)) એ x ∈ ....... માટે પ્રતિવિધેય ધરાવે.
  • left square bracket 0 comma space straight pi right square bracket
  • open square brackets negative straight pi over 4 comma straight pi over 4 close square brackets
  • open square brackets negative straight pi over 2 comma pi over 2 close square brackets
  • open square brackets 0 comma pi over 4 close square brackets

Advertisement

Switch