જો log2 x + logx 2 =  = log2y + logy2 તથા x ≠ y હોય તો x+y = ......    from Mathematics દ્વિઘાત સમીકરણ

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : દ્વિઘાત સમીકરણ

Multiple Choice Questions

21.
દ્વિઘાત સમીકરણનો ઉકેલ શોધતી વખતે બે વિદ્યાર્થીઓ પૈકી એક વિદ્યાર્થી સમીકરણનું અચળ પદ ખોટું લખે છે અને સમીકરણનાં સાચાં બીજનો સરવાળો 3 મળે છે જ્યારે બીજો વિદ્યાર્થી x2 નો સહગુણક તથા અચળ પદ સાચાં લખે છે જે અનુક્રમે 1 તથા -18 છે તો મળતા દ્વિઘાત સમીકરણનાં સાચાં બીજ ...... હોય.
  • -6, 3
  • 6, -3
  • -3, -6
  • 3, 6

22.
જો દ્વિઘાત સમીકરણ (a2 + b2)x2 - 2b(a + c) x + (b2+c2)=0 નાં બીજ સમાન હોય તોa, b, c,  ....... શ્રેણીમાં હોય a, b, c ∈ R. 
  • સમગુણોત્તર 

  • સમાંતર 
  • સ્વરિત 
  • સમાંતર-સમગુણોત્તર

23.
જો α ≠ β તથા α2 = 5α - 3 તેમજ β2 = 5β - 3 હોય, તો bold alpha over bold beta અને bold beta over bold alpha બીજ ધરાવતું દ્વિઘાત સમીકરણ ....... હોય.
  • x2 + 19x -3 = 0
  • 3x2 - 19x + 3 = 0
  • 3x2-16x + 1 = 0
  • 3x2 -- 19x - 3 = 0

24. સમીકરણ fraction numerator bold log bold space bold 3 bold space bold plus bold space bold log bold space bold left parenthesis bold x to the power of bold 2 bold space bold plus bold space bold 2 bold right parenthesis over denominator bold log bold space bold left parenthesis bold x bold space bold minus bold space bold 2 bold right parenthesis end fraction bold space bold equals bold space bold 2 ના ....... ઉકેલ મળે.
  • 0

  • 1

  • 2

  • 3


Advertisement
25. સમીકરણ open parentheses bold 5 bold plus bold 2 square root of bold 6 close parentheses to the power of bold x bold minus bold 3 end exponent bold plus open parentheses bold 5 bold minus bold 2 square root of bold 6 close parentheses to the power of bold x bold minus bold 3 end exponent bold space bold equals bold space bold 10 નું એક બીજ ....... હોય.
  • 3

  • 8

  • 4

  • 2


Advertisement
26. જો log2 x + logx 2 = begin inline style bold 10 over bold 3 end style = log2y + logy2 તથા x ≠ y હોય તો x+y = ......   
  • bold 8 bold minus bold 2 to the power of begin inline style bold 1 over bold 3 end style end exponent
  • bold 2 to the power of begin inline style bold 1 over bold 3 end style end exponent
  • bold 8 bold plus bold 2 to the power of begin inline style bold 1 over bold 3 end style end exponent
  • 8

C.

bold 8 bold plus bold 2 to the power of begin inline style bold 1 over bold 3 end style end exponent

Tips: -

અહીં log2 x + logx 2 = bold 10 over bold 3 = log2 y + logy 2 આપેલ છે. 
bold therefore bold space bold log subscript bold 2 bold space bold x bold space bold plus bold space fraction numerator bold 1 over denominator bold log subscript bold 2 bold space bold x end fraction bold space bold equals bold space bold 10 over bold 3 લેતાં, = fraction numerator bold left parenthesis bold log subscript bold 2 bold space bold x bold right parenthesis to the power of bold 2 bold space bold plus bold space bold 1 over denominator bold log subscript bold 2 bold space bold x end fraction bold space bold equals bold space bold space bold 10 over bold 3
ધારો કે log2 x = m, આથી 3(m2 + 1) = 10m
 
∴ 3m2-10m + 3 = 0

∴ (3m - 1) (m-3) = 0 

∴ m = 3  અથવા m = bold 1 over bold 3
∴ log2x = 3 અથવા log2 x = bold 1 over bold 3
 
આ જ રીતે, log2 y = 3 કે log2 y = bold 1 over bold 3 મળે.
 
હવે, x ≠ y હોવાથી, log2 x = 3 લેતાં. log2 y ≠ 3. આથી log2 y = bold 1 over bold 3 થાય. 
અથવા log2 x = bold 1 over bold 3 લેતાં, log2 y = 3 થાય. 
∴ x = 23 તથા y = bold 2 to the power of begin inline style bold 1 over bold 3 end style end exponent અથવા x = bold 2 to the power of begin inline style bold 1 over bold 3 end style end exponentઅને y = 23થાય
bold therefore bold space bold x bold space bold plus bold space bold y bold space bold equals bold space bold 2 to the power of bold 3 bold space bold plus bold space bold 2 to the power of begin inline style bold 1 over bold 3 end style end exponent bold space bold equals bold space bold 8 bold space bold plus bold space bold 2 to the power of begin inline style bold 1 over bold 3 end style end exponent

Advertisement
27. સમીકરણ square root of bold x bold minus bold 2 end root bold left parenthesis bold italic x to the power of bold 2 bold space bold minus bold space bold 4 bold italic x bold space bold plus bold space bold 3 bold right parenthesis bold space bold equals bold space bold 0 નાં વાસ્તવિક બીજ ...... હોય. 
  • 1,2,3

  • 2, 3

  • 1, 3

  • 1, 2


28. જો bold x bold space bold equals bold space square root of bold 12 bold minus square root of bold 140 end root હોય, તો bold x bold space bold plus bold space bold 1 over bold x bold space bold equals bold space bold. bold. bold. bold. bold. bold. bold. bold. bold.
  • fraction numerator square root of bold 7 bold minus bold 3 square root of bold 5 over denominator bold 2 end fraction
  • fraction numerator square root of bold 7 bold minus square root of bold 5 over denominator bold 2 end fraction
  • square root of bold 7 bold plus square root of bold 5
  • fraction numerator bold 3 square root of bold 7 bold minus square root of bold 5 over denominator bold 2 end fraction

Advertisement
29.
જો 3,3 એ દ્વિઘાત સમીકરણ x2 + ax + β = 0 નાં બીજ હોય તથા -8, 2 એ દ્વિઘાત સમીકરણ x2 + αx + b = 0 નાં બીજ હોય, તો સમીકરણ x2 + ax + b = 0 નાં બીજ ...... હોય.
  • -8, 2
  • 8, -2
  • -2, -8
  • 2, 8

30. જો x, y, z ભિન્ન અને વાસ્તવિક હોય, તો x2 + 4y2 + 9z2 - 6yz - 3zx - 2xy હંમેશાં ....... હોય. 
  • 0

  • ઋણ 
  • અનૃણ
  • સંકર સંખ્યા

Advertisement

Switch