જો x કોઈ વાસ્તવિક સંખ્યા હોય તો  ની મહત્તમ કિંમત ........ હોય. from Mathematics દ્વિઘાત સમીકરણ

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : દ્વિઘાત સમીકરણ

Multiple Choice Questions

61.
∆ PQR જો m∠R = bold pi over bold 2, હોય તથા સમીકરણ ax2 + bx + c = 0 (જ્યાં a ≠0)) નાં બીજ tan open parentheses bold P over bold 2 close parentheses તથા bold tan open parentheses bold Q over bold 2 close parentheses હોય, તો નીચેનામાંથી કયું સત્ય બને ? 
  • b = a + c 
  • b = c
  • c = a + b
  • a = b + c

Advertisement
62. જો x કોઈ વાસ્તવિક સંખ્યા હોય તો fraction numerator bold 3 to the power of bold 2 bold plus bold 9 bold x bold plus bold 17 over denominator bold 3 bold a to the power of bold 2 bold plus bold 9 bold x bold plus bold 7 end fraction ની મહત્તમ કિંમત ........ હોય.
  • 1

  • 1/4

  • 17/7

  • 41


D.

41

Tips: -

ધારો કે, fraction numerator bold 3 to the power of bold 2 bold plus bold 9 bold x bold plus bold 17 over denominator bold 3 bold a to the power of bold 2 bold plus bold 9 bold x bold plus bold 7 end fraction bold space bold equals bold space bold y
∴ 3x2 + 9x + 17 = 3x2y + 9xy + 7y

∴ 3x2 (y -1) + 9x (y - 1) + 7y - 17 = 0

હવે x કોઈ વાસ્તવિક સંખ્યા હોવાથી, D = b2- 4ac ≥ 0 હોય જ.
 
∴ 81 (y-1)2 - 12 (y-1) (7y-17) ≥ 0

∴ 81 (y2 - 2y - 1) - 12 (7y2 - 24 y + 17) ≥ 0

∴ -y2 + 42y - 41 ≥ 0

∴ y2 - 42 y + 41 ≤ 0

∴ (y - 1) (y - 41) ≤ 0

∴ 1 ≤ y ≤ 41

∴  bold y bold space bold equals bold space fraction numerator bold 3 to the power of bold 2 bold plus bold 9 bold x bold plus bold 17 over denominator bold 3 bold a to the power of bold 2 bold plus bold 9 bold x bold plus bold 7 end fraction ની મહત્તમ કિંમત 41 હોય.

Advertisement
63. સમીકરણ 2x3 + 3x + k = 0 ને બે ભિન્ન વાસ્તવિક બીજ [0, 1] માં હોય, તો k ની કિંમત ....... હોય. 
  • 1 તથા 2 ની વચ્ચે

  • 2 અને 3 ની વચ્ચે 
  • -1 અને 0 ની વચ્ચે 
  • અસ્તિત્વ ન ધરાવતી

64.
જો α ∈ R હોય અને સમીકરણ -3 (x -[x])2 + 2 (x -[x]) + a2 = 0 ને પૂર્ણાંક ઉકેલ ન હોય તો a ની શક્ય કિંમતિ ....... અંતરાલમાં હોય.
  • (1, 2) 
  • (-1, 0) ∪ (0, 1) 
  • (-2, -1) 
  • (-∞, -2) (2, ∞)

Advertisement
65.
સમીકરણો x2 + 2x + 3 = 0 અને ax2 + bx + c = 0, a, b, c ∈ R ના બંને બીજ સામાન્ય હોય તો a : b : c = ....... 
  • 3 : 2 : 1
  • 1 : 3 : 2 
  • 1 : 2 : 3
  • 3 : 1 : 2

66. સમીકરણ esinx -e-sinx -4 = 0 ને......
  • બરાબર બે વાસ્તવિક બીજ હોય. 
  • બરાબર એક જ વાસ્તવિક બીજ હોય. 
  • બરાબર ચાર વાસ્તવિક બીજ હોય.
  • એક પણ વાસ્તવિક બીજ ન હોય. 

67.
દ્વિઘાત સમીકરણ x2 - (a - 2) x - a - 1 = 0 નાં બીજનાં વર્ગોનો સરવાળો ન્યુનતમ કિંમત ધારણ કરે તો a = ......... . 
  • 3
  • 2
  • 0
  • 1

68. દ્વિઘાત સમીકરણ x2 - 2mx + n2 - 1 = 0 નાં બંને બીજ m ∈ .....  માટે -2 થી મોટા પરંતુ 4 થી નાનાં હોય. 
  • (-1, 3)
  • (-2, 0) 
  • (3, ∞) 
  • (1, 4)

Advertisement
69. જો દ્વિઘાત સમીકરણ નાં બંને બીજ અનુક્રમે તથા હોય તો
  • 3

  • 2

  • 1

  • 0


70.
જો દ્વિઘાત સમીકરણ bx2 + cx + a = 0 નાં બીજ સંકર હોય તો બહુપદી 3b2x2 + 6bcx + 2c2 = ........... હોય.
  • < -4ab
  • < 4ab
  • > - 4ab
  • > 4ab

Advertisement

Switch