y = xn (a cos (log x) + b sin (log x)). જો y એ x2y2 + (1 - 2n) xy, + ay = 0 નું સમાધાન કરે તો A = .......  from Mathematics લક્ષ-સાતત્ય અને વિકલન

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : લક્ષ-સાતત્ય અને વિકલન

Multiple Choice Questions

31.
જો વિધેય f એ R પર સતત છે તથા bold f open parentheses fraction numerator bold 1 over denominator bold 4 bold n end fraction close parentheses bold space bold equals bold space bold left parenthesis bold sin bold space bold e to the power of bold n bold right parenthesis bold space bold e to the power of bold minus bold n to the power of bold 2 end exponent bold space bold plus bold space fraction numerator bold n to the power of bold 2 over denominator bold n to the power of bold 2 bold space bold plus bold space bold 1 end fraction bold space bold ત ો bold space bold f bold left parenthesis bold 0 bold right parenthesis bold space bold spaceની કિંમત ..... 
  • 0

  • -1

  • 1

  • bold 1 over bold 2

32. જો f(x) = bold x over bold 2 bold minus bold 2 તો અંતરાલ bold left square bracket bold 0 bold comma bold space bold pi bold right square bracket પર 
  • tan (f(x)) અને f-1(x) બંને સતત થશે.

  • tan (f(x)) અને f-1(x) બંને અસતત થશે.

  • tan (f(x)) અને fraction numerator bold 1 over denominator bold f bold left parenthesis bold c bold right parenthesis end fraction બંને સતત થશે. 

  • tan (f(x)) અને fraction numerator bold 1 over denominator bold f bold left parenthesis bold c bold right parenthesis end fraction બંને અસતત થશે. 


33. bold જ ો bold space bold space bold f bold left parenthesis bold x bold right parenthesis bold space open curly brackets table row cell bold left parenthesis bold 1 bold plus bold vertical line bold sin bold space bold x bold vertical line to the power of fraction numerator bold a over denominator bold vertical line bold sin bold space bold x bold vertical line end fraction end exponent end cell cell fraction numerator bold minus bold pi over denominator bold 6 end fraction bold less than bold x bold less than bold 0 end cell row bold b cell bold x bold space bold equals bold space bold 0 bold space end cell row cell bold e to the power of bold tan bold 2 bold x bold µ bold tan bold 3 bold x end exponent end cell cell bold 0 bold space bold less than bold space bold x bold space bold less than bold space bold pi over bold 6 end cell end table close bold space bold એ bold space open parentheses fraction numerator bold minus bold pi over denominator bold 6 end fraction bold comma bold pi over bold 6 close parentheses bold space bold પર bold space bold સતત bold space bold હ ો ય bold space bold ત ો bold comma bold space bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold. bold space
  • bold a bold space bold equals bold space bold 2 over bold 3 bold comma bold space bold b bold space bold equals bold space bold e to the power of bold 2 bold space bold space
  • bold space bold a bold space bold equals bold space bold 1 over bold 3 bold comma bold space bold b bold space bold equals bold space bold e to the power of bold 1 over bold 3 end exponent bold space
  • bold a bold space bold equals bold space bold e to the power of bold 1 over bold 2 end exponent bold comma bold space bold b bold space bold equals bold e bold space to the power of bold 2 over bold 3 end exponent bold space bold space
  • bold space bold a bold space bold equals bold space bold 2 over bold 3 bold comma bold space bold b bold space bold equals bold space bold e to the power of bold 2 over bold 3 end exponent

34.
bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space fraction numerator bold tan bold left square bracket bold e to the power of bold 2 bold right square bracket bold space bold minus bold space bold tan bold left square bracket bold minus bold e bold right square bracket bold x to the power of bold 3 over denominator bold sin to the power of bold 3 bold x end fraction bold comma bold spacex # 0. જો f એ x = 0 આગળ સતત હોય તો f(0) = .....
  • 12

  • -12

  • 14

  • 15


Advertisement
35.

f અને g વિકલનીય વિધેય છે. g'(a) = 2. g(a) = b તથા fog = I તો f'(b) = ........

  • 1

  • 2

  • bold 2 over bold 3
  • bold 1 over bold 2

36. bold જ ો bold space bold y bold space bold equals bold space fraction numerator bold ax to the power of bold 2 over denominator bold left parenthesis bold x bold space bold minus bold space bold a bold right parenthesis bold space bold left parenthesis bold x bold space bold minus bold space bold b bold right parenthesis bold space bold left parenthesis bold x bold space bold minus bold space bold c bold right parenthesis bold space end fraction bold space bold plus bold space fraction numerator bold bx over denominator bold left parenthesis bold x bold space bold minus bold space bold b bold 0 bold space bold left parenthesis bold x bold space bold minus bold space bold c bold right parenthesis bold space end fraction bold space bold plus bold space fraction numerator bold c over denominator bold x bold space bold minus bold space bold c end fraction bold space bold plus bold space bold 1 bold space bold ત ો bold space bold y over bold y bold space bold equals bold space bold. bold. bold. bold. bold.
  • Error converting from MathML to accessible text.
  • bold 1 over bold 2 open parentheses fraction numerator bold a over denominator bold a bold minus bold x end fraction bold plus fraction numerator bold b over denominator bold b bold minus bold x end fraction bold plus fraction numerator bold c over denominator bold c bold minus bold x end fraction close parentheses bold space
  • Error converting from MathML to accessible text.
  • bold 1 over bold x

37.
f(x) = fraction numerator bold 1 over denominator bold 1 bold minus bold x end fraction g(x) = f3n(x) જ્યાં fn(x) = fofof ..... of (n વખત). વિધેય g(x) કેટલા બિંદુએ અસતત થશે ? 
  • 2ન

  • 3n

  • 2

  • 2n + 1


38. જો x = f(t), y = g(t), y = g(t) તો fraction numerator bold d to the power of bold 2 bold y over denominator bold dx to the power of bold 2 end fraction = ........ 
  • bold space fraction numerator bold f bold apostrophe bold g bold " bold space bold minus bold space bold g bold apostrophe bold f bold " over denominator bold left parenthesis bold f bold apostrophe bold right parenthesis to the power of bold 3 end fraction bold space
  • fraction numerator bold f bold " over denominator bold g bold " end fraction bold space
  • fraction numerator begin display style bold f bold apostrophe bold g bold " bold space bold minus bold space bold g bold apostrophe bold f bold " end style over denominator begin display style bold left parenthesis bold f bold apostrophe bold right parenthesis to the power of bold 2 end style end fraction
  • fraction numerator bold g bold " over denominator bold f bold " end fraction

Advertisement
Advertisement
39.
y = xn (a cos (log x) + b sin (log x)). જો y એ x2y2 + (1 - 2n) xy, + ay = 0 નું સમાધાન કરે તો A = ....... 
  • n

  • 1 - n2

  • 1 + n2

  • bold 1 bold plus bold 1 over bold n

C.

1 + n2

Tips: -

y = xn(a cos (log x) + b sin (log x))

y1 = nxn-1 (a cos (log x) + b cos (log x)) + xn

xy1 = ny + xn (-a sin (log x) + b cos (log x))

xy2 + y1 = ny1 + nxn-1 (-a sin (log x) + b cos (log x)) + xn (-a cos(log x)bold 1 over bold x -b sin (log x)bold 1 over bold x)

x2y2 + xy1 = nxy1 + n (xy1 - ny) - y

x2y2 + (1 - 2n) xy1 + (1 + n2)y = 0

Advertisement
40. f(x) = fraction numerator bold 1 over denominator bold log bold space bold vertical line bold x bold vertical line end fraction એ કેટલાં બિંદુઓએ અસતત થશે ? 
  • 1

  • 2

  • 3

  • 4


Advertisement

Switch