વક્ર  ના બિંદુ P આગળનો સ્પર્શક રેખા y = x + 5 ને સમાંતર છે. જો બિંદુ P નો y - યામ  હોય તો α = ......  from Mathematics લક્ષ-સાતત્ય અને વિકલન

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : લક્ષ-સાતત્ય અને વિકલન

Multiple Choice Questions

191.

વિધેયbold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space bold x to the power of bold 3 over bold 2 end exponent bold space bold plus bold space bold x to the power of fraction numerator bold minus bold 3 over denominator bold 2 end fraction end exponent bold minus bold 4 bold space open parentheses bold x bold space bold plus bold space bold 1 over bold x close parentheses નું ન્યુનતમ મૂલ્ય ....... છે.

  • -10

  • 10

  • 0

  • ન મળે. 


192.
ધારો કે f(x) = ax3 + bx2 + cx + d જ્યાં a, b, c, d ∈Rઅને 3b2 < c2 એ વધતું વિધેય છે અને g(x) = af (x) + bf"(x) + c2. જો G(x) = g(t) dt, α ∈R તો α < x < α + 1 માટે 
  • G(x) એ વધતું વિધેય છે.

  • G(x) એ ઘટતું વિધેય છે. 

  • G(x) એ એક-એક વિધેય છે.

  • G(x) એ વધતું કે ઘટતું વિધેય નથી.


193.
જો વક્ર y = f(x) ઓ સ્પર્શક જે બિંદુનો x યામ 1 હોય તે બિંદુએ અક્ષની ધન દિશા સામેbold pi over bold 6 માપનો ખુણો બનાવે છે તથા જે બિંદુના x - યામ અનુક્રમે 2 તથા 3 હોય તે બિંદુએ bold pi over 3તથા bold pi over bold 4માપના ખૂણા બનાવે છે, તો table row bold 3 row bold integral row bold 1 end table bold f bold " bold left parenthesis bold x bold right parenthesis bold space bold f bold " bold left parenthesis bold x bold right parenthesis bold space bold dx bold space bold plus bold space table row bold 3 row bold integral row bold 2 end table bold f bold " bold left parenthesis bold x bold right parenthesis bold space bold dx bold space bold equals bold space bold. bold. bold. bold. bold. bold. bold. bold space
  • fraction numerator bold 3 square root of bold 3 over denominator bold 4 end fraction
  • fraction numerator begin display style bold 4 bold minus bold 3 square root of bold 3 end style over denominator begin display style bold 3 end style end fraction
  • fraction numerator bold 4 bold plus square root of bold 3 over denominator bold 3 end fraction
  • fraction numerator bold 4 bold plus bold 3 square root of bold 3 over denominator bold 3 end fraction

194. જો બિંદુ (0, 3) અને (5, -2)ને જોડતી રેખા એ વક્ર bold y bold space bold equals bold space fraction numerator bold c over denominator bold x bold space bold plus bold space bold 1 end fractionનો સ્પર્શક હોય, તો c = ....... 
  • 1

  • 2

  • 4

  • 8


Advertisement
195. સમીકરણ x3 + 2x2 + 5x + 2 cos x = 0 ને [0, 2bold pi] માં કેટલા ઉકેલ મળે ? 
  • 1

  • 2

  • 3

  • 0


196. વિધેય bold f bold left parenthesis bold x bold right parenthesis bold space bold equals bold space fraction numerator bold tan to the power of bold 2 bold x bold space bold minus bold space bold cot to the power of bold 2 bold space bold x bold space bold plus bold space bold 1 over denominator bold tan to the power of bold 2 bold x bold space bold plus bold space bold cot to the power of bold 2 bold x bold minus bold 1 end fractionમાટે નીચેનામાંથી કયા વિધાન સત્ય છે ? 
  • f(x)નું વૈશ્વિક ન્યુઅનતમ મૂલ્ય -1 છે.

  • f(x)નું વૈશ્વિક મહત્તમ મુલ્ય bold 5 over bold 3 છે. 

  • f(x)ને વૈશ્વિક ન્યુનતમ મૂલ્ય ન મળે.

  • f(x)ને વૈશ્વિક મહતમ મૂલ્ય ન મળે. 


197. R ત્રિજ્યાવાળા ગોલકની અંતર્ગત મહત્તમ ઘનફળ ધરાવતા નળાકારની ઊંચાઈ ....... થશે. 
  • R

  • fraction numerator bold 2 bold R over denominator square root of bold 3 end fraction
  • fraction numerator bold 5 bold R over denominator bold 4 end fraction
  • fraction numerator begin display style bold R end style over denominator begin display style square root of bold 3 end style end fraction

Advertisement
198.
વક્ર bold y bold space bold equals bold space bold x bold space bold tan bold space bold alpha bold space bold minus bold space bold 1 over bold 2 bold space fraction numerator bold x to the power of bold 2 over denominator bold u to the power of bold 2 bold space bold cos to the power of bold 2 bold space bold alpha end fraction bold comma bold space bold alpha bold space bold element of bold space open parentheses bold 0 bold comma bold pi over bold 2 close parentheses ના બિંદુ P આગળનો સ્પર્શક રેખા y = x + 5 ને સમાંતર છે. જો બિંદુ P નો y - યામ bold u to the power of bold 2 over bold 4 હોય તો α = ...... 
  • bold pi over bold 3
  • bold pi over bold 12
  • bold pi over bold 6
  • bold pi over bold 4

A.

bold pi over bold 3

Tips: -

bold y bold space bold equals bold space bold x bold space bold tan bold space bold alpha bold space bold minus bold space bold 1 over bold 2 bold space fraction numerator bold x to the power of bold 2 over denominator bold u to the power of bold 2 bold space bold cos to the power of bold 2 bold space bold alpha end fraction

bold therefore bold space bold dy over bold dx bold space bold equals bold space bold tan bold space bold space bold minus bold space bold space fraction numerator bold x to the power of bold 2 over denominator bold u to the power of bold 2 bold space bold cos to the power of bold 2 bold space bold alpha end fraction

સ્પર્શક રેખા y = x + 5 ને સમાંતર છે.

bold space bold tan bold space bold space bold alpha bold space bold minus bold space bold space fraction numerator bold x to the power of bold 2 over denominator bold u to the power of bold 2 bold space bold cos to the power of bold 2 bold space bold alpha end fraction bold space bold equals bold space bold 1

∴ x = (tan α - 1) u2 cos2 α, તથા bold y bold space bold equals bold space bold u to the power of bold 2 over bold 4


આપેલ સમીકરણ y = a tan α bold minus bold 1 over bold 2 bold space fraction numerator bold x to the power of bold 2 over denominator bold u to the power of bold 2 bold space bold cos to the power of bold 2 bold space bold alpha end fraction માં મૂકતાં,

bold therefore bold space bold u to the power of bold 2 over bold 4 bold space bold equals bold space bold left parenthesis bold tan bold space bold alpha bold space bold minus bold space bold 1 bold right parenthesis bold space bold u to the power of bold 2 bold space bold cos to the power of bold 2 bold space bold space open square brackets bold tan bold space bold space bold minus bold space bold 1 over bold 2 bold space bold left parenthesis bold tan bold space bold space bold minus bold space bold 1 close square brackets

bold therefore bold space bold 1 over bold 4 bold space bold equals bold space bold left parenthesis bold tan bold space bold space bold minus bold space bold 1 bold right parenthesis bold space bold cos bold space bold space open square brackets fraction numerator bold tan bold space bold space bold plus bold space bold 1 over denominator bold 2 end fraction close square brackets

bold therefore bold space bold 1 over bold 2 bold space bold equals bold space bold cos to the power of bold 2 bold space bold space bold left parenthesis bold tan bold space bold space bold minus bold space bold 1 bold right parenthesis bold space bold equals bold space bold sin to the power of bold 2 bold space bold alpha bold space bold minus bold space bold cos to the power of bold 2 bold space bold alpha bold space bold equals bold space bold minus bold space bold cos to the power of bold 2 bold alpha bold space

bold therefore bold space bold cos to the power of bold 2 bold space bold alpha bold space bold equals bold space bold minus bold space bold 1 over bold 2 bold space bold space bold space bold space bold space bold space bold આથ ી bold space bold 2 bold alpha bold space bold equals bold space fraction numerator bold 2 bold pi over denominator bold 3 end fraction bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space bold space open parentheses bold alpha bold space bold element of bold space open parentheses bold 0 bold comma bold pi over bold 2 close parentheses close parentheses

bold therefore bold space bold space bold alpha bold space bold equals bold space bold pi over bold 3


Advertisement
Advertisement
199.
જો વિધેય f(x) = 2x3 - 9ax2 + 12a2x + 1 ને x = x1 આગળ સ્થાનીય મહત્તમ અને x = x2 આગળ સ્થાનીય ન્યુઅનતમ મળે જ્યાં x2 = x12 તો a = ........ 
  • 0

  • 2

  • bold 1 over bold 4
  • (A) અથવા (c)


200. વક્ર bold y bold space bold equals bold space bold x to the power of bold 1 over bold 3 end exponent (1 - cos x) ને x = 0 આગળના સ્પર્શકનું સમીકરણ .... થશે. 
  • x = 0

  • x = 1

  • y = 0

  • y = 1 


Advertisement

Switch