વક્ર y2 = 4ax ના બિંદુ P(at2, 2at) આગળ દોરેલ સ્પર્શક તથા અભિલંબ X-અક્ષને અનુક્રમે બિંદુ T તથા N માં છેદે છે. આ પરવલયના બિંદુ T તથા N માં છેદે છે. આ પ્રવલયના બિંદુ P આગળ દોરેલ સ્પર્શક તથા બિંદુ T, P N માંથી પસાર થતા વર્તુળના બિંદુ P આગળ દોરેલ સ્પર્શક વચ્ચેના ખૂણાનું માપ ....... થશે.  from Mathematics લક્ષ-સાતત્ય અને વિકલન

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : લક્ષ-સાતત્ય અને વિકલન

Multiple Choice Questions

201. વક્ર y = |x2 - 1| તથા y = |x2 - 3| વચ્ચેના ખૂણાનું માપ ...... 
  • bold space bold tan to the power of bold minus bold 1 end exponent open parentheses fraction numerator bold 5 square root of bold 2 over denominator bold 7 end fraction close parentheses bold space
  • bold space bold tan to the power of bold minus bold 1 end exponent bold space open parentheses fraction numerator bold 3 square root of bold 2 over denominator bold 7 end fraction close parentheses bold space
  • bold tan to the power of bold minus bold 1 end exponent open parentheses fraction numerator bold 4 square root of bold 2 over denominator bold 7 end fraction close parentheses bold space
  • bold tan to the power of bold minus bold 1 end exponent open parentheses fraction numerator bold 2 square root of bold 2 over denominator bold 7 end fraction close parentheses

202.
જો વક્ર xny = an ના કોઈ પણ બિંદુ એ દોરેલ સ્પર્શક તથા તેનાથી અક્ષો દ્વારા રચાતા ત્રિકોણનું ક્ષેત્રફળ અચળ હોય તો, n = ........ 
  • 1

  • 2

  • bold 3 over bold 2
  • bold 1 over bold 2 bold space

203.
ઉપવલય bold x to the power of bold 2 over bold 27 bold space bold plus bold space bold y to the power of bold 2 bold space bold equals bold space bold 1 bold spaceને બિંદુ bold left parenthesis bold 3 bold space square root of bold 3 bold space bold cos bold space bold theta bold comma bold space bold sin bold space bold theta bold right parenthesis bold space bold spaceઆગળ સ્પર્શક દોરેલ છે. આ સ્પર્શક દ્વારા કપાતા અંતઃખંડોનો સરવાળો ને એકઈ કિંમત માટે ન્યુનતમ થાય ? 
  • bold pi over bold 6
  • bold pi over bold 8
  • bold pi over bold 4
  • fraction numerator begin display style bold pi end style over denominator begin display style bold 3 end style end fraction

204.
ધારો કે વિધેય f માટે દરેક x ∈ R માટે f(x)નું અસ્તિત્વ છે તથા h(x) = f(x) - (f(x))2 + (f(x))3, x ∈ R તો 
  • જો f વધતું વિધેય હોય તો h ઘટતું વિધેય થશે.

  • જો f ઘટતું વિધેય હોય તો h વધતું વિધેય થશે. 

  • જો f વધતું વિધેય હોય તો h પણ વધતું વિધેય થશે. 

  • h વિશે કઈ કહી શકાય નહિ.


Advertisement
205. ધારો કે f(x) = (1 + x)n - (1 + nx), x∈ [-1, ∞). f ને
  • x = 0 આગળ વૈશ્વિક ન્યુનતમ મૂલ્ય મળે.

  • x = 0 આગળ મહત્તમ કે ન્યુનતમ વિશે કઈ કહી શકાય નહિ.

  • x = 0 આગળ વૈશ્વિક મહત્તમ મૂલ્ય મળે. 

  • x = 0 આગળ વૈશ્વિક મહત્તમ મૂલ્ય કે વૈશ્વિક મૂલ્ય ન મળે. 


206.
વક્ર y = [|sin x| + |cos x|] અને x2 + y2 = 10, જ્યાં એ [x] એ x થી નાનો ન હોય તેવો મોટામાં મોટો પૂર્ણાંક, વચ્ચેના ખૂણાનું માપ ........ 
  • bold tan to the power of bold minus bold 1 end exponent square root of bold 3

  • bold tan to the power of bold minus bold 1 end exponent bold space open parentheses fraction numerator bold 1 over denominator square root of bold 3 end fraction close parentheses
  • tan-1(-3)

  • tan-1


207.
વક્ર x3 - y2 = 0 ના બિંદુ P(4m2, 8m3) અગળનો સ્પર્શક બીજા કોઈ બિંદુ Q આગળનો અભિલંબ પણ હોય તો 9m2 = ...... 
  • 1

  • 2

  • 3

  • 4


208.
જો f(x) = x2 + 2bx + 2c2  અને g(x)= - x2 - 2cx + b2 એ એવા વિધેય છે જ્યાં min f(x) > max g(x), તો b અને c વચ્ચે કેવો સંબંધ હશે ? 
  • bold 0 bold space bold less than bold space bold c bold space bold less than bold space bold b over bold 2
  • bold vertical line bold c bold vertical line bold space bold greater than bold space bold vertical line bold b bold vertical line bold space square root of bold 2
  • bold vertical line bold c bold vertical line bold space bold less than bold space bold vertical line bold b bold vertical line bold space square root of bold 2
  • કોઈ સંબંધ ન હોય. 


Advertisement
209. ધારો કે f(x) = open curly brackets table attributes columnalign left center end attributes row cell bold x to the power of bold 3 bold space bold plus bold space bold x to the power of bold 2 bold space bold minus bold space bold 10 bold x bold comma end cell cell bold minus bold 1 bold space bold less-than or slanted equal to bold space bold x bold space bold less than bold space bold 0 bold space end cell row cell bold sin bold space bold x bold comma end cell cell bold 0 bold space bold less-than or slanted equal to bold space bold x bold space bold less than bold space bold pi over bold 2 bold comma end cell row cell bold 1 bold space bold plus bold space bold cos bold space bold x bold comma end cell cell bold pi over bold 2 bold space bold less-than or slanted equal to bold space bold x bold space bold less than bold space bold pi end cell end table close તો f  ને  
  • bold pi over bold 2 આગળ સ્થાનીય ન્યુનતમ મૂલ્ય મળે છે.

  • bold pi over bold 2 આગળ સ્થાનીય મહત્તમ મૂલ્ય મળે છે. 
  • bold pi over bold 2 આગળ વૈશ્ચિક મહત્તમ મૂલ્ય મળે છે.
  • x= 0 આગળ વૈશ્વિક ન્યુનતમ મુલ્ય મળે છે. 


Advertisement
210.
વક્ર y2 = 4ax ના બિંદુ P(at2, 2at) આગળ દોરેલ સ્પર્શક તથા અભિલંબ X-અક્ષને અનુક્રમે બિંદુ T તથા N માં છેદે છે. આ પરવલયના બિંદુ T તથા N માં છેદે છે. આ પ્રવલયના બિંદુ P આગળ દોરેલ સ્પર્શક તથા બિંદુ T, P N માંથી પસાર થતા વર્તુળના બિંદુ P આગળ દોરેલ સ્પર્શક વચ્ચેના ખૂણાનું માપ ....... થશે. 
  • tan-1 |t|

  • cot-1 |t|

  • tan-1 t2

  • cot-1 t2 


A.

tan-1 |t|

B.

cot-1 |t|

Tips: -

y2 = 4ax ના બિંદુ (x1, y1) આગળ દોરેલ સ્પર્શકનું સમીકરણ yy1 = 2a(x + x1) છે.

બિંદુ P (at2, 2at) આગળ સ્પર્શકનું સમીકરણ


ty = x + at2                                                           (1)


સ્પર્શકનો ઢાળ = bold 1 over bold t


તે X-અક્ષને બિંદુ T માં છેદે છે.                 આથી T(-at2,0)       (2)


આ બિંદુએ અભિલંબનું સમીકરણ y = -tx + 2at + at3



તે X-અક્ષને બિંદુ N (2at + at2, 0) માં છેદશે. બિંદુ T,P, Nમાંથી જે વર્તુળ પસાર થાય છે તેના વ્યસાંત તે x-અક્ષને બિંદુઓ T તથા N થશે કારણ કે bold TP with bold left right arrow on top bold space અને bold space bold NP with bold left right arrow on top એ એકબીજાને લંબ છે.

વર્તુળનું સમીકરણ (x + at2) (x - 2a - at2) + y2 =0


x2 + y2 - 2ax - at2(2a + at2) = 0


x પ્રત્યે વિકલન કરતાં

bold 2 bold x bold space bold plus bold space bold 2 bold y bold space bold dy over bold dx bold space bold equals bold space bold 2 bold a bold space bold space bold space bold space bold આથ ી bold space bold dy over bold dx bold space bold equals bold space fraction numerator bold a bold space bold minus bold space bold x over denominator bold y end fraction

open parentheses bold dy over bold dx close parentheses subscript bold left parenthesis bold at to the power of bold 2 bold comma bold space bold 2 bold at bold right parenthesis end subscript bold space bold equals bold space fraction numerator bold a bold space bold minus bold space bold at to the power of bold 2 over denominator bold 2 bold at end fraction bold space bold equals bold space fraction numerator bold 1 bold minus bold t to the power of bold 2 over denominator bold 2 bold t end fraction bold space

જે P આગળના વર્તુળના સ્પર્શકનો ઢાળ થશે. (3)

(2) અને (3) પરથી,

bold tan bold space bold theta bold space bold equals bold space open vertical bar table row cell fraction numerator begin display style bold 1 over bold t end style bold minus begin display style fraction numerator bold 1 bold minus bold t to the power of bold 2 over denominator bold 2 bold t end fraction end style over denominator bold 1 bold space bold plus bold space begin display style fraction numerator bold 1 bold minus bold t to the power of bold 2 over denominator bold 2 bold t to the power of bold 2 end fraction end style end fraction end cell end table close vertical bar bold space bold equals bold space open vertical bar table row cell fraction numerator bold 2 bold t bold space bold minus bold space bold t bold space bold plus bold space bold t to the power of bold 3 over denominator bold t to the power of bold 2 bold space bold plus bold space bold 1 bold space end fraction end cell end table close vertical bar bold space bold equals bold space open vertical bar table row cell fraction numerator bold t bold space bold plus bold space bold t to the power of bold 3 over denominator bold t to the power of bold 2 bold space bold plus bold space bold 1 end fraction end cell end table close vertical bar bold space bold equals bold space bold vertical line bold t bold vertical line

bold therefore bold space bold theta bold space bold equals bold space bold tan to the power of bold minus bold 1 end exponent bold space bold vertical line bold t bold vertical line

Advertisement
Advertisement

Switch