જો (1+x)n ના દ્વિપદી વિસ્તરણના સહગુણકો c0, c2, ..., cn હોય, તો નીચે આપેલ વિકલ્પમાંથી કયો વિકલ્પ સત્ય ના બને ? from Mathematics સંકર સંખ્યાઓ

Book Store

Download books and chapters from book store.
Currently only available for.
CBSE

Subject

Mathematics
Advertisement
zigya logo

Gujarati JEE Mathematics : સંકર સંખ્યાઓ

Multiple Choice Questions

Advertisement
21.
જો (1+x)n ના દ્વિપદી વિસ્તરણના સહગુણકો c0, c2, ..., cn હોય, તો નીચે આપેલ વિકલ્પમાંથી કયો વિકલ્પ સત્ય ના બને ?
  • bold c subscript bold 1 bold space bold plus bold space bold c subscript bold 5 bold space bold plus bold space bold c subscript bold 9 bold space bold plus bold space bold c subscript bold 0 bold space bold plus bold space bold. bold. bold. bold space bold equals bold space open parentheses bold 2 to the power of bold n bold minus bold 1 end exponent bold space bold plus bold space bold 2 to the power of begin inline style bold n over bold 2 end style end exponent bold space bold sin bold space bold pi close parentheses bold 4
  • Error converting from MathML to accessible text.
  • bold c subscript bold 1 bold space bold minus bold space bold c subscript bold 3 bold space bold minus bold space bold c subscript bold 5 bold space bold minus bold space bold. bold. bold. bold space bold equals bold space bold 2 to the power of begin inline style bold n over bold 2 end style end exponent bold space bold sin bold space bold nπ over bold 4
  • bold c subscript bold 0 bold space end subscript bold minus bold space bold c subscript bold 2 bold space bold plus bold space bold c subscript bold 4 bold space bold minus bold space bold c subscript bold 6 bold space bold plus bold space bold. bold. bold. bold space bold 2 to the power of begin inline style bold n over bold 2 end style end exponent bold space bold cos bold space bold nπ over bold 4

A.

bold c subscript bold 1 bold space bold plus bold space bold c subscript bold 5 bold space bold plus bold space bold c subscript bold 9 bold space bold plus bold space bold c subscript bold 0 bold space bold plus bold space bold. bold. bold. bold space bold equals bold space open parentheses bold 2 to the power of bold n bold minus bold 1 end exponent bold space bold plus bold space bold 2 to the power of begin inline style bold n over bold 2 end style end exponent bold space bold sin bold space bold pi close parentheses bold 4

Tips: -

(1 + x)n = c0 + c1 + c2x2 + c3x3 + ...                           (1)

(1) માં x = i મૂકતાં

(1+i)n = c0 + c1i - c2 - c3i + c4 + ...                           (2)

સમીકરણ (1) માં x = -i મૂકતાં

(1-i)
n = c0 - c1i - c2 + c3i + c4 + ...                                (3)

(2) અને (3) નો સરવાળો કરતાં,

2 (c
0 - c2 + c4 - c6 + ... ) = (1+i)n + (1-i)n

∴  c0 - c2 + c4 - c6 + ... = fraction numerator bold left parenthesis bold 1 bold plus bold i bold right parenthesis to the power of bold n bold plus bold left parenthesis bold 1 bold minus bold i bold right parenthesis to the power of bold n over denominator bold 2 end fraction

                                    
                                     bold equals bold space bold 2 to the power of begin inline style bold n over bold 2 end style end exponent bold space open parentheses fraction numerator open parentheses bold cos begin display style bold pi over bold 4 end style bold space bold plus bold space bold i bold space bold sin bold space begin display style bold pi over bold 4 end style close parentheses to the power of bold n bold space bold plus bold space open parentheses bold cos begin display style bold pi over bold 4 end style bold minus bold space bold i bold space bold sin bold space begin display style bold pi over bold 4 end style close parentheses to the power of bold n over denominator bold 2 end fraction close parentheses

bold equals bold space bold 2 to the power of begin inline style bold n over bold 2 end style end exponent bold space open parentheses fraction numerator bold cos begin display style bold nπ over bold 4 end style bold plus bold i bold space bold sin bold space begin display style bold nπ over bold 4 end style bold space bold plus bold space bold cos bold space begin display style bold nπ over bold 4 end style bold space bold minus bold space bold i bold space bold sin bold space begin display style bold nπ over bold 4 end style over denominator bold 2 end fraction close parentheses

∴ c0 - c2 + c4 - c6 + ... = bold 2 to the power of begin inline style bold n over bold 2 end style end exponent bold space bold cos bold space bold nπ over bold 4                                (4)
તે જ રીતે (2) અને (3)ની બાદબાકી કરતાં, 

2i (c1 - c3 + c5) = (1+i)n - (1-i)n

bold c subscript bold 1 bold space bold minus bold space bold c subscript bold 3 bold space bold plus bold space bold c subscript bold 5 bold space bold. bold. bold. bold space bold equals bold space bold 2 to the power of begin inline style bold n over bold 2 end style end exponent bold space bold sin bold space bold nπ over bold 4                                    (5)

∴ આપણે જાણીએ છીએ કે c1 + c3 + c5 + ... = 2n-1                    (6)

સમીકરણ (5) અને (6) નો સરવાળો કરતાં,

bold 2 bold space bold left parenthesis bold c subscript bold 1 bold plus bold space bold c subscript bold 5 bold space bold plus bold space bold c subscript bold 9 bold space bold plus bold space bold. bold. bold. bold right parenthesis bold space bold equals bold space bold 2 to the power of bold n bold minus bold 1 end exponent bold space bold plus bold space bold 2 to the power of begin inline style bold n over bold 2 end style end exponent bold space bold sin bold space bold nπ over bold 4

bold therefore bold space bold c subscript bold 1 bold space bold plus bold space bold c subscript bold 5 bold space bold plus bold space bold c subscript bold 9 bold space bold plus bold space bold. bold. bold. bold space bold equals bold space bold 1 over bold 2 bold space open parentheses bold 2 to the power of bold n bold minus bold 1 end exponent bold space bold 2 to the power of begin inline style bold n over bold 2 end style end exponent bold space bold sin bold space bold nπ over bold 4 close parentheses


Advertisement
22. સમીકરણ zn = (z+1)n નાં બીજ .....
  • 1/2 ત્રિજ્યાવાળા વર્તુળ પર આવેલ છે.

  • 2n બાજુવાળા નિયમિત બહુકોણ પર આવેલ છે.
  • n બાજુવાળા નિયમિત બહુકોણ પર આવેલ છે. 
  • 2x + 1 = 0રેખા પર આવેલ છે. 

23. સંકર સંખ્યા z1 = x1 + iy1 અને z2 = x2 + iy2 માટે જો x1 ≤ x2  અને y1 ≤ y2 તો આપણે z1 ∩ z2 વડે દર્શાવીએ.
ધારો કે z એ સંકર સંખ્યા છે જ્યાં 1 ∩ z, તો
  • fraction numerator bold 1 bold minus bold z over denominator bold 1 bold plus bold z end fraction bold intersection bold 0
  • fraction numerator bold 1 bold plus bold z over denominator bold 1 bold minus bold z end fraction bold intersection bold 0
  • fraction numerator bold 1 bold minus bold z over denominator bold 1 bold plus bold z end fraction bold intersection bold minus bold i

24. જો |z2-1| = |z|2 + 1, તો z એ ................ . 
  • કાલ્પનિક અક્ષ પર હોય. 

  • ઉપવલય પર હોય. 

  • વર્તુળ પર હોય. 

  • વાસ્તવિક અક્ષ પર હોય.


Advertisement
25. જો fraction numerator bold z bold minus bold 1 over denominator bold e to the power of bold iθ end fraction bold space bold plus bold space fraction numerator bold e to the power of bold iθ over denominator bold z bold minus bold 1 end fraction કાલ્પનિક ભાગ શુન્ય હોય, તથા fraction numerator bold z bold minus bold 1 over denominator bold e to the power of bold iθ end fraction વાસ્તવિક ન હોય તો z એ 
  • રેખા પર હોય.

  • વર્તુળ હોય.
  • પરવલય પર હોય.  
  • ઉપવલય પર હોય.

26. જો x = cos θ + i sin θ અને y = cos ϕ + i sin ϕ તો xm ynfraction numerator bold 1 over denominator bold x to the power of bold m bold space bold y to the power of bold n end fraction bold space bold equals bold space bold. bold. bold. bold. bold. bold. bold. bold. bold space bold.
  • 2cos (mθ-nϕ)
  • 2cos(mθ + nϕ)
  • cos(mθ - nϕ)
  • cos(mθ + nϕ)

27. જો |z| < 1, |v| < 1 અને z = fraction numerator bold u bold minus bold v over denominator bold 1 bold minus bold uv end fraction તો |z| ની ન્યુનતમ કિંમત ....... થાય. 
  • fraction numerator bold vertical line bold u bold vertical line bold plus bold vertical line bold v bold vertical line over denominator bold 1 bold minus bold vertical line bold u bold vertical line bold vertical line bold v bold vertical line end fraction
  • fraction numerator open vertical bar bold vertical line bold u bold vertical line bold minus bold vertical line bold v bold vertical line close vertical bar over denominator bold 1 bold minus bold vertical line bold u bold vertical line bold vertical line bold v bold vertical line end fraction
  • fraction numerator bold vertical line bold u bold vertical line bold minus bold vertical line bold v bold vertical line over denominator bold 1 bold plus bold vertical line bold u bold vertical line bold vertical line bold v bold vertical line end fraction
  • fraction numerator bold vertical line bold u bold vertical line bold plus bold vertical line bold v bold vertical line over denominator bold 1 bold minus bold vertical line bold u bold vertical line bold vertical line bold v bold vertical line end fraction

28. z1 અને z2 એવી સંકર સંખ્યાઓ છે. જ્યાં open vertical bar fraction numerator bold z subscript bold 1 bold minus bold 2 bold z subscript bold 2 over denominator bold 2 bold minus bold z subscript bold 1 bold space bold z with bold bar on top subscript bold 2 end fraction close vertical bar bold space bold equals bold space bold 1 તથા |z2| ≠ 1. બિંદુ એ
  • 2 ત્રિજ્યાવાળા વર્તુળ પર હોય.

  • 4 ત્રિજ્યાવાળા વર્તુળ પર હોય. 
  • X-અક્ષને સમાંતર રેખા પર હોય. 
  • Y-અક્ષને સમાંતર રેખા પર હોય.

Advertisement
29. |z-i| + |z+i| ≤ 4 એ આર્ગન્ડ સમતલમાં કયો પ્રદેશ દર્શાવશે ?
  • ઉપવલયની અંદરનો ભાગ

  • વર્તુળની બહારનો ભાગ 
  • ઉપવલય ઉપર તથા તેની અંદરનો ભાગ 
  • વર્તુળ ઉપર તથા તેની અંદરનો ભાગ

30.
જો સંકર સંખ્યા z (z ≠ 2)એ સમીકરણ z2 = 4z + |z2| + fraction numerator bold 16 over denominator bold vertical line bold z bold vertical line to the power of bold 3 end fraction નું સમાધાન કરે તો |z|ની કિંમત ...... થાય.
  • 1

  • 2

  • 3

  • 4


Advertisement

Switch